Przejdź do głównej treści

Dlaczego predykcyjne utrzymanie ruchu nie działa? 4 możliwe przyczyny

Katgoria: MES / Utworzono: 22 lipiec 2019
Dlaczego predykcyjne utrzymanie ruchu nie działa? 4 możliwe przyczyny
quantum logo 2019Predykcyjne utrzymanie ruchu to najnowszy i najbardziej wyrafinowany model organizacji działań UR, oparty na postulatach Przemysłu 4.0. Metoda ta pozwala wyeliminować wszelkie zbędne prace i skupić się wyłącznie na tych, które w danym momencie rzeczywiście są potrzebne. To duża różnica i przewaga nad starszymi modelami UR, reaktywnymi czy opartymi na harmonogramie przeglądów. Rezultatem wdrożenia predykcyjnego UR powinno być maksymalnie efektywne wykorzystanie zasobów służby technicznej, a także pełna dostępność maszyn produkcyjnych (zero downtime).

REKLAMA
ASSECO KSEF
 
Predykcyjne utrzymanie ruchu to złożone środowisko rozwiązań organizacyjnych, współpracujących ze sobą czujników, urządzeń pomiarowych i systemów informatycznych. Wśród tych ostatnich prym wiodą systemy realizacji produkcji (MES – Manufacturing Execution System), a dokładniej ich komponenty utrzymania ruchu CMMS (Computerised Maintenance Management Systems). Kluczową rolę pełnią też systemy nadzorujące stan maszyn i przebieg procesów SCADA (Supervisory Control And Data Acquisition).

Pomimo korzyści, jakie niesie predykcyjne utrzymanie ruchu, cześć przedsiębiorstw zniechęca się kosztami inwestycji, a także praktycznymi problemami, jakie można napotykać podczas wdrożenia. Warto przyjrzeć się najczęściej spotykanym trudnościom bliżej, aby przygotować się na nie zawczasu.

Zbyt szeroki zakres wdrożenia

W celu wykrycia anomalii w pracy maszyn, które zwiastować mogą zbliżającą się usterkę bądź awarię, wykorzystuje się m.in. aparaturę mierzącą zużycie prądu, temperaturę, poziom wibracji i płynów. Opomiarowanie w ten sposób wszystkich urządzeń na hali produkcyjnej jest naturalnie przedsięwzięciem dość kosztownym, a do tego niekoniecznie uzasadnionym. Dlatego też, aby zracjonalizować koszty inwestycji, warto czasem ograniczyć zakres wdrożenia predykcyjnego UR tylko dla tych urządzeń, które stanowią wąskie gardła procesu produkcyjnego. Decyzję o tym, jakie zasoby objąć opomiarowaniem, ułatwić może analiza niezawodności RCM (Reliability Centered Maintenance). Takie ograniczone wdrożenie pozwala zapewnić bezawaryjną pracę kluczowych dla realizacji zleceń maszyn, czyniąc jednocześnie metodę predykcyjnego UR dostępną dla szerszej grupy przedsiębiorstw.

Oczekiwanie natychmiastowych rezultatów

Wdrożenie predykcyjnego utrzymania ruchu jest procesem czasochłonnym przynajmniej z dwóch powodów. Po pierwsze, aby zidentyfikować anomalie mogące prowadzić do awarii, rozpoznać prawdopodobieństwo wystąpienia poszczególnych zdarzeń i opracować procedury postępowania, należy zbierać dane przez odpowiednio długi okres czasu. Tylko dysponując bogatym materiałem do analizy, można odnaleźć występujące zależności i tendencje.

Po drugie, ponieważ każda hala produkcyjna jest tworem w pewnym stopniu unikalnym, każde wdrożenie predykcyjnego UR również cechuje się niepowtarzalnością. Nie można w nim wprost przenieść modelu sprawdzonego już wcześniej w innej lokalizacji. Konieczność dobrania indywidualnych rozwiązań, obserwowanie ich efektów i ciągłe doskonalenie, musi przełożyć się na czas potrzebny na wdrożenie.

Brak konsekwencji w działaniu

Inwestycja w sprzęt i oprogramowanie wspierające predykcyjne utrzymanie ruchu jest niezbędnym, ale niewystarczającym krokiem do osiągnięcia celów wdrożenia. Także w tym przypadku sprawdza się reguła, że nawet najlepsze rozwiązania techniczne nie spełnią swoich zadań, jeśli nie będą właściwie użyte.

Należy pamiętać, że predykcyjne utrzymanie ruchu to zespół ściśle powiązanych ze sobą procesów, gdzie nie może zabraknąć choćby jednego ogniwa. Przykładowo, załóżmy że posiadamy już system zbierający i archiwizujący dane dotyczące kondycji maszyn. Jeżeli jednak zaniedbamy którykolwiek z późniejszych etapów: analiza danych, wyciągniecie poprawnych wniosków, podjęcie stosownych działań, cały trud pójdzie na marne.

Dlatego też, pomimo że część procesów i decyzji można obecnie zautomatyzować dzięki systemom zarządzania utrzymaniem ruchu (CMMS), o sukcesie wdrożenia predykcyjnego UR decyduje przede wszystkim postawa pracowników i konsekwentne przestrzeganie procedur.

Brak integracji danych

W optymalnie wdrożonym predykcyjnym UR, wymiana informacji pomiędzy jego komponentami powinna następować automatycznie. W praktyce oznacza to integrację systemu pobierającego dane z maszyn (SCADA – Supervisory Control And Data Acquisition) z systemem służącym do analizy i delegowania zadań dla działu utrzymania ruchu (CMMS – Computerised Maintenance Management Systems). Integracja pomaga uniknąć marnowania tak istotnego dla utrzymania ruchu czasu, zapewnia spójność i wysoką jakość danych.

Przeszkody, jakie ewentualnie mogą się pojawić podczas wdrożenia predykcyjnego utrzymania ruchu, nie powinny zniechęcić do skorzystania z tej metody. Wynagrodzi ona poniesione trudy bezprecedensową efektywnością działu UR, zarówno pod względem wykorzystania zasobów ludzkich jak i technicznych.

Źródło: www.quantum-software.com

Najnowsze wiadomości

Kwantowy przełom w cyberochronie - nadchodząca dekada przepisze zasady szyfrowania na nowo
Przez długi czas cyfrowe bezpieczeństwo opierało się na prostym założeniu: współczesne komputery potrzebowałyby ogromnych zasobów i wielu lat, aby złamać silne algorytmy szyfrowania. Rozwój technologii kwantowej zaczyna jednak tę regułę podważać, a eksperci przewidują, że w perspektywie 5–10 lat może nadejść „dzień zero”. Jest to moment, w którym zaawansowana maszyna kwantowa będzie w stanie przełamać większość aktualnie stosowanych zabezpieczeń kryptograficznych w czasie liczonym nie w latach, lecz w godzinach.
PSI prezentuje nową identyfikację wizualną
psilogoW ramach realizowanej strategii transformacji PSI Software SE zaprezentowała nową identyfikację wizualną. Odświeżony wizerunek w spójny sposób oddaje technologiczne zaawansowanie firmy, jej głęboką wiedzę branżową oraz silne ukierunkowanie na potrzeby klientów. Zmiany te wzmacniają pozycję PSI jako innowacyjnego lidera technologicznego w obszarze skalowalnych rozwiązań informatycznych opartych na sztucznej inteligencji i chmurze, rozwijanych z myślą o energetyce i przemyśle.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
F5 rozszerza portfolio bezpieczeństwa o narzędzia do ochrony systemów AI w środowiskach enterprise
F5 ogłosiło wprowadzenie dwóch nowych rozwiązań - F5 AI Guardrails oraz F5 AI Red Team - które mają odpowiedzieć na jedno z kluczowych wyzwań współczesnych organizacji: bezpieczne wdrażanie i eksploatację systemów sztucznej inteligencji na dużą skalę. Nowa oferta łączy ochronę działania modeli AI w czasie rzeczywistym z ofensy
Snowflake + OpenAI: AI bliżej biznesu
Snowflake przyspiesza wykorzystanie danych i sztucznej inteligencji w firmach, przenosząc AI z fazy eksperymentów do codziennych procesów biznesowych. Nowe rozwiązania w ramach AI Data Cloud integrują modele AI bezpośrednio z danymi, narzędziami deweloperskimi i warstwą semantyczną. Partnerstwo z OpenAI, agent Cortex Code, Semantic View Autopilot oraz rozwój Snowflake Postgres pokazują, jak budować skalowalne, bezpieczne i mierzalne wdrożenia AI w skali całej organizacji.



Najnowsze artykuły

Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
SENTEWspółczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Migracja z SAP ECC na S4 HANA: Ryzyka, korzyści i alternatywne rozwiązania
W ostatnich latach wiele firm, które korzystają z systemu SAP ECC (Enterprise Central Component), stoi przed decyzją o przejściu na nowszą wersję — SAP S4 HANA. W obliczu końca wsparcia dla ECC w 2030 roku, temat ten staje się coraz bardziej aktualny. Przemiany technologiczne oraz rosnące oczekiwania związane z integracją nowych funkcji, jak sztuczna inteligencja (AI), skłaniają do refleksji nad tym, czy warto podjąć tak dużą zmianę w architekturze systemu. Przyjrzyjmy się głównym powodom, dla których firmy rozważają migrację do S4 HANA, ale także argumentom,  które mogą przemawiać za pozostaniem przy dotychczasowym systemie ECC, przynajmniej na krótki okres.
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
BPSC FORTERROZysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Ponad połowa cyberataków zaczyna się od błędu człowieka
Ponad 2/3 firm w Polsce odnotowała w zeszłym roku co najmniej 1 incydent naruszenia bezpieczeństwa . Według danych Unit 42, zespołu analitycznego Palo Alto Networks, aż 60% ataków rozpoczyna się od działań wymierzonych w pracowników – najczęściej pod postacią phishingu i innych form inżynierii społecznej . To pokazuje, że w systemie ochrony organizacji pracownicy są kluczowym ogniwem – i że firmy muszą nie tylko edukować, ale też konsekwentnie egzekwować zasady cyberhigieny. Warto o tym pamiętać szczególnie teraz, w październiku, gdy obchodzimy Europejski Miesiąc Cyberbezpieczeństwa.
MES - holistyczne zarządzanie produkcją
Nowoczesna produkcja wymaga precyzji, szybkości i pełnej kontroli nad przebiegiem procesów. Rosnąca złożoność zleceń oraz presja kosztowa sprawiają, że ręczne raportowanie i intuicyjne zarządzanie coraz częściej okazują się niewystarczające. Firmy szukają rozwiązań, które umożliwiają im widzenie produkcji „na żywo”, a nie z opóźnieniem kilku godzin czy dni. W tym kontekście kluczową rolę odgrywają narzędzia, które porządkują informacje i pozwalają reagować natychmiast, zamiast po fakcie.

Przeczytaj Również

MES - holistyczne zarządzanie produkcją

Nowoczesna produkcja wymaga precyzji, szybkości i pełnej kontroli nad przebiegiem procesów. Rosnąca… / Czytaj więcej

Aspekty bezpieczeństwa przy projektowaniu integracji MES z parkiem maszynowym

Cyfryzacja procesu zbierania informacji z obszaru produkcyjnego za pomocą systemów klasy MES (Manuf… / Czytaj więcej

MES – efektywne planowanie i kontrola produkcji

Nowoczesne firmy produkcyjne coraz częściej wykorzystują systemy MES (Manufacturing Execution Syste… / Czytaj więcej

Właściwie po co nam MES?

Systemy zarządzania produkcją (MES) istnieją od prawie dwóch dekad, więc nie są już czymś nowym. Po… / Czytaj więcej

Wdrożenie systemu MES - krok po kroku

Digitalizacja, Industry 4.0, Smart Factory i IoT już niebawem będą decydować o konkurencyjności w b… / Czytaj więcej

Dane technologiczne jako podstawa efektywnego zarządzania produkcją

Źle oszacowane zapotrzebowaniu na surowce, przeciążone stanowiska produkcyjne, błędnie rozliczone k… / Czytaj więcej