Sztuczna inteligencja w magazynie
Sztuczna inteligencja to szeroka i dynamicznie rozwijająca się dziedzina wiedzy, pozwalająca między innymi skutecznie eksplorować duże zbiory informacji, rozwiązywać problemy niekompletności danych, czy wspierać podejmowanie trudnych, złożonych decyzji. Z jej praktycznym zastosowaniem możemy zetknąć się już teraz, korzystając z platform VoD (rekomendacje tytułów zgodnych z naszymi preferencjami) czy robiąc zdjęcia nowoczesnym smartfonem (rozpoznawanie obrazów w celu automatycznej kalibracji parametrów zdjęcia).Możliwości sztucznej inteligencji, a w szczególności jednego z jej aspektów – uczenia maszynowego, coraz mocniej przyciągają uwagę deweloperów oprogramowania zarządzającego magazynem (WMS – Warehouse Management System). Już dzisiaj warto przyjrzeć się, jakie problemy uczenie maszynowe pomoże rozwiązać, i jakie usprawnienia w pracy magazynu może wprowadzić.
Uczenie maszynowe
Uczenie maszynowe, czy inaczej systemy uczące się, to oprogramowanie potrafiące automatycznie doskonalić i optymalizować swoje działanie w oparciu o nabywaną wiedzę. Do budowania wiedzy wykorzystują dostarczane do systemu dane i informacje. W jakich obszarach uczenie maszynowe może być użyte w magazynie?
Optymalne miejsce składowania produktów
Dzięki algorytmom uczenia maszynowego, system WMS będzie mógł ulepszyć proces automatycznego przypisywania miejsc magazynowych. Decydując o rozlokowaniu towaru, system będzie jednocześnie uwzględniał wiele złożonych, zmieniających się w czasie czynników i zależności, takich jak wskaźniki rotacji oraz statystyki łączenia różnych towarów w ramach jednego zamówienia. Efektem takiej optymalizacji będzie skrócenie tras i czasu realizacji zbiórek.
Analiza popytu
Algorytmy uczenia maszynowego pozwalają na wielowymiarową analizę zachowania konsumentów, co umożliwia uchwycenie trendów i sezonowości w popycie na określone towary. Przy ich wykorzystaniu system WMS będzie mógł wyznaczyć przewidywane zapotrzebowanie na dany produkt w przyszłości, co przełoży się na lepsze planowanie i racjonalne zarządzanie poziomem stanów magazynowych.
Zarządzanie priorytetami w czasie rzeczywistym
W pracy magazynów, zwłaszcza tych obsługiwanych przez operatorów logistycznych, często występują spiętrzenia zleceń, które wymagają szybkiego znalezienia najlepszego kompromisu. Zaimplementowane w systemie WMS algorytmy uczenia maszynowego mogą pomóc oszacować skutki możliwych do podjęcia decyzji, wliczając w to finansowe konsekwencje opóźnień. Dzięki temu, menedżerowie magazynu uzyskają wsparcie przy podejmowaniu decyzji o tym, jakie działania powinny w danej chwili otrzymać najwyższy priorytet.
Rozpoznawanie znaków i mowy
Algorytmy uczenia maszynowego pozwalają zwiększyć niezawodność systemów rozpoznawania znaków na podstawie obrazu (OCR – Optical Character Recognition). Dzięki nim, możliwe staje się skuteczne rozpoznawanie znaków nawet wtedy, gdy te są częściowo zabrudzone czy uszkodzone. W magazynach produkcyjnych i służby utrzymania ruchu, technologia OCR często stosowana jest łącznie ze znakowaniem DPM (Direct Part Marking), czyli z symbolami naniesionymi bezpośrednio na produkcie. Jest ona szczególnie przydatna w sytuacji, gdy oznakowany przedmiot będzie narażony na ekstremalne warunki, takie jak wysoka temperatura czy środowisko żrące.
Uczenie maszynowe stanowi istotne wsparcie dla systemów rozpoznawania mowy, wykorzystywanych przy zbiórce typu Voice Picking. Metoda Voice Picking sprawia że pracownik ma obydwie ręce wolne, co znacząco zwiększa swobodę ruchów i ułatwia pracę w trakcie kompletacji. Voice Picking podnosi ponadto bezpieczeństwo sprzętu – straty materialne wywołane upuszczeniem terminali mobilnych są zmorą dla wielu magazynów.
Płynny przepływ towarów
Innym ciekawym zastosowaniem uczenia maszynowego, przeznaczonym dla magazynu automatycznego, jest wsparcie oprogramowania MFC (Material Flow Control) w płynnym przepływie towarów. Optymalizacja pracy przenośników i układnic pozwoli skutecznie zapobiegać zatorom, przyspieszając równocześnie cały proces przyjęcia i wydania towaru. Wykorzystanie tej funkcji będzie szczególnie ważne w magazynach e-commerce, obsługujących dużą ilość niewielkich zamówień i charakteryzujących się dużym natężeniem ruchu.
Tych kilka przykładów nie wyczerpuje naturalnie wszystkich możliwości, jakie otwierają się w magazynie za sprawą uczenia maszynowego. Należy w każdym razie oczekiwać, że lista zadań powierzanych algorytmom AI będzie się w najbliższej przyszłości systematycznie i dynamicznie rosnąć.
Źródło: www.quantum-software.com/
Uczenie maszynowe
Uczenie maszynowe, czy inaczej systemy uczące się, to oprogramowanie potrafiące automatycznie doskonalić i optymalizować swoje działanie w oparciu o nabywaną wiedzę. Do budowania wiedzy wykorzystują dostarczane do systemu dane i informacje. W jakich obszarach uczenie maszynowe może być użyte w magazynie?
Optymalne miejsce składowania produktów
Dzięki algorytmom uczenia maszynowego, system WMS będzie mógł ulepszyć proces automatycznego przypisywania miejsc magazynowych. Decydując o rozlokowaniu towaru, system będzie jednocześnie uwzględniał wiele złożonych, zmieniających się w czasie czynników i zależności, takich jak wskaźniki rotacji oraz statystyki łączenia różnych towarów w ramach jednego zamówienia. Efektem takiej optymalizacji będzie skrócenie tras i czasu realizacji zbiórek.
Analiza popytu
Algorytmy uczenia maszynowego pozwalają na wielowymiarową analizę zachowania konsumentów, co umożliwia uchwycenie trendów i sezonowości w popycie na określone towary. Przy ich wykorzystaniu system WMS będzie mógł wyznaczyć przewidywane zapotrzebowanie na dany produkt w przyszłości, co przełoży się na lepsze planowanie i racjonalne zarządzanie poziomem stanów magazynowych.
Zarządzanie priorytetami w czasie rzeczywistym
W pracy magazynów, zwłaszcza tych obsługiwanych przez operatorów logistycznych, często występują spiętrzenia zleceń, które wymagają szybkiego znalezienia najlepszego kompromisu. Zaimplementowane w systemie WMS algorytmy uczenia maszynowego mogą pomóc oszacować skutki możliwych do podjęcia decyzji, wliczając w to finansowe konsekwencje opóźnień. Dzięki temu, menedżerowie magazynu uzyskają wsparcie przy podejmowaniu decyzji o tym, jakie działania powinny w danej chwili otrzymać najwyższy priorytet.
Rozpoznawanie znaków i mowy
Algorytmy uczenia maszynowego pozwalają zwiększyć niezawodność systemów rozpoznawania znaków na podstawie obrazu (OCR – Optical Character Recognition). Dzięki nim, możliwe staje się skuteczne rozpoznawanie znaków nawet wtedy, gdy te są częściowo zabrudzone czy uszkodzone. W magazynach produkcyjnych i służby utrzymania ruchu, technologia OCR często stosowana jest łącznie ze znakowaniem DPM (Direct Part Marking), czyli z symbolami naniesionymi bezpośrednio na produkcie. Jest ona szczególnie przydatna w sytuacji, gdy oznakowany przedmiot będzie narażony na ekstremalne warunki, takie jak wysoka temperatura czy środowisko żrące.
Uczenie maszynowe stanowi istotne wsparcie dla systemów rozpoznawania mowy, wykorzystywanych przy zbiórce typu Voice Picking. Metoda Voice Picking sprawia że pracownik ma obydwie ręce wolne, co znacząco zwiększa swobodę ruchów i ułatwia pracę w trakcie kompletacji. Voice Picking podnosi ponadto bezpieczeństwo sprzętu – straty materialne wywołane upuszczeniem terminali mobilnych są zmorą dla wielu magazynów.
Płynny przepływ towarów
Innym ciekawym zastosowaniem uczenia maszynowego, przeznaczonym dla magazynu automatycznego, jest wsparcie oprogramowania MFC (Material Flow Control) w płynnym przepływie towarów. Optymalizacja pracy przenośników i układnic pozwoli skutecznie zapobiegać zatorom, przyspieszając równocześnie cały proces przyjęcia i wydania towaru. Wykorzystanie tej funkcji będzie szczególnie ważne w magazynach e-commerce, obsługujących dużą ilość niewielkich zamówień i charakteryzujących się dużym natężeniem ruchu.
Tych kilka przykładów nie wyczerpuje naturalnie wszystkich możliwości, jakie otwierają się w magazynie za sprawą uczenia maszynowego. Należy w każdym razie oczekiwać, że lista zadań powierzanych algorytmom AI będzie się w najbliższej przyszłości systematycznie i dynamicznie rosnąć.
Źródło: www.quantum-software.com/
Najnowsze wiadomości
Kwantowy przełom w cyberochronie - nadchodząca dekada przepisze zasady szyfrowania na nowo
Przez długi czas cyfrowe bezpieczeństwo opierało się na prostym założeniu: współczesne komputery potrzebowałyby ogromnych zasobów i wielu lat, aby złamać silne algorytmy szyfrowania. Rozwój technologii kwantowej zaczyna jednak tę regułę podważać, a eksperci przewidują, że w perspektywie 5–10 lat może nadejść „dzień zero”. Jest to moment, w którym zaawansowana maszyna kwantowa będzie w stanie przełamać większość aktualnie stosowanych zabezpieczeń kryptograficznych w czasie liczonym nie w latach, lecz w godzinach.
PSI prezentuje nową identyfikację wizualną
W ramach realizowanej strategii transformacji PSI Software SE zaprezentowała nową identyfikację wizualną. Odświeżony wizerunek w spójny sposób oddaje technologiczne zaawansowanie firmy, jej głęboką wiedzę branżową oraz silne ukierunkowanie na potrzeby klientów. Zmiany te wzmacniają pozycję PSI jako innowacyjnego lidera technologicznego w obszarze skalowalnych rozwiązań informatycznych opartych na sztucznej inteligencji i chmurze, rozwijanych z myślą o energetyce i przemyśle.
W ramach realizowanej strategii transformacji PSI Software SE zaprezentowała nową identyfikację wizualną. Odświeżony wizerunek w spójny sposób oddaje technologiczne zaawansowanie firmy, jej głęboką wiedzę branżową oraz silne ukierunkowanie na potrzeby klientów. Zmiany te wzmacniają pozycję PSI jako innowacyjnego lidera technologicznego w obszarze skalowalnych rozwiązań informatycznych opartych na sztucznej inteligencji i chmurze, rozwijanych z myślą o energetyce i przemyśle.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
F5 rozszerza portfolio bezpieczeństwa o narzędzia do ochrony systemów AI w środowiskach enterprise
F5 ogłosiło wprowadzenie dwóch nowych rozwiązań - F5 AI Guardrails oraz F5 AI Red Team - które mają odpowiedzieć na jedno z kluczowych wyzwań współczesnych organizacji: bezpieczne wdrażanie i eksploatację systemów sztucznej inteligencji na dużą skalę. Nowa oferta łączy ochronę działania modeli AI w czasie rzeczywistym z ofensy
Snowflake + OpenAI: AI bliżej biznesu
Snowflake przyspiesza wykorzystanie danych i sztucznej inteligencji w firmach, przenosząc AI z fazy eksperymentów do codziennych procesów biznesowych. Nowe rozwiązania w ramach AI Data Cloud integrują modele AI bezpośrednio z danymi, narzędziami deweloperskimi i warstwą semantyczną. Partnerstwo z OpenAI, agent Cortex Code, Semantic View Autopilot oraz rozwój Snowflake Postgres pokazują, jak budować skalowalne, bezpieczne i mierzalne wdrożenia AI w skali całej organizacji.
Najnowsze artykuły
Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
Współczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Migracja z SAP ECC na S4 HANA: Ryzyka, korzyści i alternatywne rozwiązania
W ostatnich latach wiele firm, które korzystają z systemu SAP ECC (Enterprise Central Component), stoi przed decyzją o przejściu na nowszą wersję — SAP S4 HANA. W obliczu końca wsparcia dla ECC w 2030 roku, temat ten staje się coraz bardziej aktualny. Przemiany technologiczne oraz rosnące oczekiwania związane z integracją nowych funkcji, jak sztuczna inteligencja (AI), skłaniają do refleksji nad tym, czy warto podjąć tak dużą zmianę w architekturze systemu. Przyjrzyjmy się głównym powodom, dla których firmy rozważają migrację do S4 HANA, ale także argumentom, które mogą przemawiać za pozostaniem przy dotychczasowym systemie ECC, przynajmniej na krótki okres.
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
Zysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Ponad połowa cyberataków zaczyna się od błędu człowieka
Ponad 2/3 firm w Polsce odnotowała w zeszłym roku co najmniej 1 incydent naruszenia bezpieczeństwa . Według danych Unit 42, zespołu analitycznego Palo Alto Networks, aż 60% ataków rozpoczyna się od działań wymierzonych w pracowników – najczęściej pod postacią phishingu i innych form inżynierii społecznej . To pokazuje, że w systemie ochrony organizacji pracownicy są kluczowym ogniwem – i że firmy muszą nie tylko edukować, ale też konsekwentnie egzekwować zasady cyberhigieny. Warto o tym pamiętać szczególnie teraz, w październiku, gdy obchodzimy Europejski Miesiąc Cyberbezpieczeństwa.
MES - holistyczne zarządzanie produkcją
Nowoczesna produkcja wymaga precyzji, szybkości i pełnej kontroli nad przebiegiem procesów. Rosnąca złożoność zleceń oraz presja kosztowa sprawiają, że ręczne raportowanie i intuicyjne zarządzanie coraz częściej okazują się niewystarczające. Firmy szukają rozwiązań, które umożliwiają im widzenie produkcji „na żywo”, a nie z opóźnieniem kilku godzin czy dni. W tym kontekście kluczową rolę odgrywają narzędzia, które porządkują informacje i pozwalają reagować natychmiast, zamiast po fakcie.
Przeczytaj Również
Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
Współczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to wł… / Czytaj więcej
Nowoczesny system WMS – jak działa i jakie korzyści przynosi?
W dzisiejszym świecie to czas realizacji i precyzja decydują o konkurencyjności – ręczne zarządzani… / Czytaj więcej
Systemy MFC i WCS w automatyzacji magazynowej – rola, różnice i zastosowania
Automatyzacja procesów magazynowych wymaga wydajnych systemów sterowania przepływem materiałów oraz… / Czytaj więcej
WMS wdrożony i co dalej?
Wdrożyliście WMS. Procesy zostały zmapowane, terminale działają, dane płyną. System wystartował zgo… / Czytaj więcej
Automatyzacja magazynu – na czym polega i dlaczego warto w nią zainwestować?
Zarządzanie magazynem w oparciu o ręczne procesy jest czasochłonne, podatne na błędy i często gener… / Czytaj więcej
Jak ocenić wydajność magazynu i jakie wskaźniki KPI warto mierzyć?
Ocena efektywności pracy magazynu stanowi kluczowy element optymalizacji procesów logistycznych w p… / Czytaj więcej

