Przejdź do głównej treści

Raport - Sztuczna Inteligencja w instytucjach finansowych

Katgoria: IT Solutions / Utworzono: 21 wrzesień 2021
Pandemia sprawiła, że technologia jeszcze mocniej wkroczyła w nasze życie i zrewolucjonizowała wiele jego aspektów. Postępująca cyfryzacja zmieniła sposób, w jaki załatwiamy codzienne sprawy. Przekłada się to także na oczekiwania klientów względem instytucji finansowych i sposobu korzystania z ich usług. Dlatego organizacje, aby zachować swoją pozycję, powinny wdrażać sztuczną inteligencję, co pozwoli na zwiększenie jakości obsługi i personalizację ofert produktowych. Jak wskazali respondenci badania przeprowadzonego przez Asseco i SME Banking Club to najważniejsze cele analizy danych klientów.

REKLAMA
ASSECO KSEF
 
Raport „Sztuczna inteligencja w instytucjach finansowych. Innowacyjne platformy analizujące dane klientów sektora MŚP” podsumowuje obecny stan przygotowania europejskiego rynku do wdrażania technologii opartych na sztucznej inteligencji w sektorze finansowym. To spojrzenie na wyzwania, jakie stoją przed instytucjami tj. banki czy firmy faktoringowe – lepsze dopasowanie oferty produktowej dla małych i średnich przedsiębiorstw, większe wsparcie klientów oraz optymalizacja kosztów ich obsługi. Różnorodność zagadnień w zależności od instytucji pokazuje, jak bardzo inne potrafią być punkty widzenia oraz podejście organizacji finansowych do kierunków rozwoju.

najwieksze wyzwania 2021 asseco
Źródło: Raport Asseco „Sztuczna Inteligencja w instytucjach finansowych. Innowacyjne platformy analizujące dane klientów sektora MŚP”.

Jak pokazały wyniki naszego badania instytucje finansowe, stawiają na klientocentryczność. Kluczowy staje się aspekt poznawania potrzeb swoich odbiorców i dążenie do personalizowania podejmowanych działań. Wsparciem w tym zakresie jest analiza danych, której wyniki pozwalają na znaczące przyspieszenie obsługi klienta, lepszy dobór ofert czy usprawnienie procesu finansowania. Odpowiedzią na te potrzeby jest sztuczna inteligencja (AI), która potrafi przetworzyć ogromne ilości danych i na ich podstawie dokonać analizy. Jednak na ten moment jedynie 32% respondentów deklaruje wdrożenie rozwiązań opartych o AI. Znaczna część wykorzystuje ją w wybranych procesach, a nie w całej organizacji. Dobra wiadomość jest taka, że 65% badanych planuje wdrożyć rozwiązania oparte o sztuczną inteligencję w ciągu najbliższych dwóch lat - powiedziała Olena Gryniuk, CEE Regional Director, SME Banking Club.


Personalizacja produktów i poprawa jakości obsługi to priorytety analizy danych

90% instytucji finansowych zdaje sobie sprawę, jak ważna jest analiza cyklu życia klienta. Ponadto respondenci badania wskazują na trend związany z poznaniem swojego odbiorcy, jego preferencji, potrzeb i oferowania mu spersonalizowanych produktów oraz usług. Natomiast głównym celem wynikającym z analizy danych jest poprawa jakości obsługi, zapewniająca lepsze doświadczenie klienta MŚP.

Analizując dane o klientach, chcielibyśmy dowiedzieć się jak najwięcej o ich potrzebie wsparcia przez instytucję finansową — tu i teraz. Jednak każdy z nich jest inny, ma również inne potrzeby: posiadanie kart biznesowych, zwiększenie limitu na rachunku bankowym itd. W takim razie skąd instytucje finansowe mają wiedzieć co aktualnie zaproponować konsumentom? Właśnie dzięki Customer Data Platform (Platformie Danych Klientów) oraz dokładnej analizie możemy określić ich potrzeby w konkretnym czasie. Wyniki badania pokazują, że w zależności od branży nacisk związany z analizą klientów MŚP położony jest na trochę inny aspekt. Dla banków największe znaczenie mają lepsza obsługa i spersonalizowane oferty, dla firm faktoringowych — utrzymanie klienta, dla innych instytucji sprostanie rosnącym wymaganiom odbiorców. Wszystkie te cele mają jeden wspólny mianownik – żeby je zrealizować, musimy wiedzieć, czego konkretnie potrzebuje nasz klient w danym momencie – podkreśla Jarosław Bryl, Dyrektor Pionu Business Intelligence, Asseco Poland.


Sztuczna inteligencja staje się „must have”

Obecnie algorytmy sztucznej inteligencji wykorzystywane są zaledwie u 1/3 badanych organizacji. Najbardziej rozwinięty pod tym względem jest obszar sprzedaży, marketingu i obsługi klienta. Niemniej, uczenie maszynowe zyskuje na popularności, ponad 60% badanych instytucji planuje rozwój w tym zakresie.

W dzisiejszych czasach wdrażanie sztucznej inteligencji stało się pewnym „must have”, bez którego ciężko utrzymać konkurencyjność na rynku. Coraz więcej firm z sektora finansowego planuje i decyduje się na wykorzystanie modeli uczenia maszynowego. Jednak nieprecyzyjne regulacje, wciąż pozostają ogromną przeszkodą dla wielu obszarów, gdzie wymagana jest pełna transparentność. Dodatkową barierą, może być fakt, że często instytucje finansowe nie mają w swojej organizacji zespołów, które są wyspecjalizowane pod kątem sztucznej inteligencji i mogłyby podjąć takie wyzwanie - dodaje Jarosław Bryl, Dyrektor Pionu Business Intelligence, Asseco Poland.


Respondenci badania reprezentujący branżę bankową wskazali na potrzeby klientów, jako zagadnienie mające największy potencjał na wdrożenie sztucznej inteligencji. Natomiast firmy faktoringowe typują proces „uproduktowienia” klienta, proponując mu nowe formy współpracy, czy usług, jednak wychodząc od strony jego potrzeb, a nie bezpośredniej sprzedaży danego produktu.

najwieksze wyzwania 2021 asseco 2
Źródło: Raport Asseco „Sztuczna Inteligencja w instytucjach finansowych. Innowacyjne platformy analizujące dane klientów sektora MŚP”.

Hiperautomatyzacja to pojęcie, które od dwóch lat pojawia się na liście głównych trendów technologicznych. Oznacza wykorzystanie m.in. sztucznej inteligencji do automatyzacji zadań i procesów wykonywanych przez pracowników. Nie wszystkie z nich nadają się jednak do tego zabiegu. Dlatego decydując się na to w naszej organizacji, powinniśmy wziąć pod uwagę kilka elementów. Najważniejszą kwestią jest dostęp do danych dobrej jakości — wybierzmy ten obszar, dla którego jesteśmy w stanie takie dane pozyskać. Następnie należy dobrze zdefiniować problem oraz określić KPI, który pomoże ocenić skuteczność wdrażanego rozwiązania. Firmy posiadające scentralizowane platformy gromadzące informacje dotyczące klientów i produktów mają zazwyczaj już zrealizowany ten pierwszy, najważniejszy aspekt — dostęp do danych dobrej jakości – zaznacza Patrycja Sobczyk, Product Owner, Asseco Poland.


Kluczowe wyzwania w organizacjach związane z wdrażaniem sztucznej inteligencji dotyczą integracji, zarówno z używanymi rozwiązaniami, jak i stosowanymi procesami. Prawie połowa respondentów wskazała ten aspekt, jako największe bądź bardzo duże wyzwanie, z którym się mierzy. Tutaj z pomocą przychodzą sprawdzeni dostawcy oferujący systemy analityczne. Na bazie danych i obserwacji działań klientów online określają one ich profil oraz rekomendują najlepszą ofertę w czasie rzeczywistym.

Źródło: Asseco Poland

Najnowsze wiadomości

Kwantowy przełom w cyberochronie - nadchodząca dekada przepisze zasady szyfrowania na nowo
Przez długi czas cyfrowe bezpieczeństwo opierało się na prostym założeniu: współczesne komputery potrzebowałyby ogromnych zasobów i wielu lat, aby złamać silne algorytmy szyfrowania. Rozwój technologii kwantowej zaczyna jednak tę regułę podważać, a eksperci przewidują, że w perspektywie 5–10 lat może nadejść „dzień zero”. Jest to moment, w którym zaawansowana maszyna kwantowa będzie w stanie przełamać większość aktualnie stosowanych zabezpieczeń kryptograficznych w czasie liczonym nie w latach, lecz w godzinach.
PSI prezentuje nową identyfikację wizualną
psilogoW ramach realizowanej strategii transformacji PSI Software SE zaprezentowała nową identyfikację wizualną. Odświeżony wizerunek w spójny sposób oddaje technologiczne zaawansowanie firmy, jej głęboką wiedzę branżową oraz silne ukierunkowanie na potrzeby klientów. Zmiany te wzmacniają pozycję PSI jako innowacyjnego lidera technologicznego w obszarze skalowalnych rozwiązań informatycznych opartych na sztucznej inteligencji i chmurze, rozwijanych z myślą o energetyce i przemyśle.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
F5 rozszerza portfolio bezpieczeństwa o narzędzia do ochrony systemów AI w środowiskach enterprise
F5 ogłosiło wprowadzenie dwóch nowych rozwiązań - F5 AI Guardrails oraz F5 AI Red Team - które mają odpowiedzieć na jedno z kluczowych wyzwań współczesnych organizacji: bezpieczne wdrażanie i eksploatację systemów sztucznej inteligencji na dużą skalę. Nowa oferta łączy ochronę działania modeli AI w czasie rzeczywistym z ofensy
Snowflake + OpenAI: AI bliżej biznesu
Snowflake przyspiesza wykorzystanie danych i sztucznej inteligencji w firmach, przenosząc AI z fazy eksperymentów do codziennych procesów biznesowych. Nowe rozwiązania w ramach AI Data Cloud integrują modele AI bezpośrednio z danymi, narzędziami deweloperskimi i warstwą semantyczną. Partnerstwo z OpenAI, agent Cortex Code, Semantic View Autopilot oraz rozwój Snowflake Postgres pokazują, jak budować skalowalne, bezpieczne i mierzalne wdrożenia AI w skali całej organizacji.



Najnowsze artykuły

Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
SENTEWspółczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Migracja z SAP ECC na S4 HANA: Ryzyka, korzyści i alternatywne rozwiązania
W ostatnich latach wiele firm, które korzystają z systemu SAP ECC (Enterprise Central Component), stoi przed decyzją o przejściu na nowszą wersję — SAP S4 HANA. W obliczu końca wsparcia dla ECC w 2030 roku, temat ten staje się coraz bardziej aktualny. Przemiany technologiczne oraz rosnące oczekiwania związane z integracją nowych funkcji, jak sztuczna inteligencja (AI), skłaniają do refleksji nad tym, czy warto podjąć tak dużą zmianę w architekturze systemu. Przyjrzyjmy się głównym powodom, dla których firmy rozważają migrację do S4 HANA, ale także argumentom,  które mogą przemawiać za pozostaniem przy dotychczasowym systemie ECC, przynajmniej na krótki okres.
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
BPSC FORTERROZysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Ponad połowa cyberataków zaczyna się od błędu człowieka
Ponad 2/3 firm w Polsce odnotowała w zeszłym roku co najmniej 1 incydent naruszenia bezpieczeństwa . Według danych Unit 42, zespołu analitycznego Palo Alto Networks, aż 60% ataków rozpoczyna się od działań wymierzonych w pracowników – najczęściej pod postacią phishingu i innych form inżynierii społecznej . To pokazuje, że w systemie ochrony organizacji pracownicy są kluczowym ogniwem – i że firmy muszą nie tylko edukować, ale też konsekwentnie egzekwować zasady cyberhigieny. Warto o tym pamiętać szczególnie teraz, w październiku, gdy obchodzimy Europejski Miesiąc Cyberbezpieczeństwa.
MES - holistyczne zarządzanie produkcją
Nowoczesna produkcja wymaga precyzji, szybkości i pełnej kontroli nad przebiegiem procesów. Rosnąca złożoność zleceń oraz presja kosztowa sprawiają, że ręczne raportowanie i intuicyjne zarządzanie coraz częściej okazują się niewystarczające. Firmy szukają rozwiązań, które umożliwiają im widzenie produkcji „na żywo”, a nie z opóźnieniem kilku godzin czy dni. W tym kontekście kluczową rolę odgrywają narzędzia, które porządkują informacje i pozwalają reagować natychmiast, zamiast po fakcie.

Przeczytaj Również

Infrastruktura w punkcie zwrotnym - 5 prognoz kształtujących AI, odporność i suwerenność danych w 2026 roku

W 2026 roku zyskają firmy, które traktują infrastrukturę nie jako obszar generujący koszty, lecz ja… / Czytaj więcej

Tylko 7% firm w Europie wykorzystuje w pełni potencjał AI

72% firm w regionie EMEA uznaje rozwój narzędzi bazujących na sztucznej inteligencji za priorytet s… / Czytaj więcej

Chmura publiczna w Unii Europejskiej – między innowacją a odpowiedzialnością za dane

Transformacja cyfrowa w Europie coraz mocniej opiera się na chmurze publicznej, która stała się fun… / Czytaj więcej

Jak Cisco pomaga Europie spłacić dług technologiczny w krytycznej infrastrukturze sieciowej

Cyfryzacja, rozwój sztucznej inteligencji i nadchodzące komputery kwantowe wymagają od Europy stabi… / Czytaj więcej

MŚP inwestują w AI, kompetencje pracowników nadal wyzwaniem

Europejskie małe i średnie firmy coraz śmielej inwestują w sztuczną inteligencję, ale to kompetencj… / Czytaj więcej

AP EU AI Cloud: nowy standard suwerennej chmury i AI dla europejskich organizacji

SAP EU AI Cloud to zapowiedziana 27 listopada 2025 r. platforma, która łączy dotychczasowe inicjaty… / Czytaj więcej