Przejdź do głównej treści

Wzmocnienie łańcucha dostaw oprogramowania i zarządzania w celu poprawy cyberbezpieczeństwa systemów AI

Katgoria: IT Solutions / Utworzono: 21 październik 2024
Wzmocnienie łańcucha dostaw oprogramowania i zarządzania w celu poprawy cyberbezpieczeństwa systemów AI
W miarę jak rośnie liczba rozwiązań AI w firmach, zwiększa się także powierzchnia ataku AI. Cyberprzestępcy także zyskują dostęp do coraz bardziej zaawansowanych narzędzi opartych na sztucznej inteligencji. Rządy, regionalni legislatorzy oraz sektor prywatny traktują te zagrożenia bardzo poważnie.

REKLAMA
ASSECO KSEF
 
Kilka miesięcy temu, na Aspen Security Forum, grupa wiodących firm technologicznych uruchomiła Koalicję Na Rzecz Bezpiecznej Sztucznej Inteligencji (CoSAI). Inicjatywa będzie się koncentrować na kluczowych kwestiach związanych z bezpieczeństwem łańcucha dostaw oprogramowania dla systemów AI, przygotowaniem obrońców na zmieniający się krajobraz zagrożeń oraz zarządzaniem ryzykiem AI. Bezpieczeństwo AI jest teraz ważniejsze niż kiedykolwiek, ponieważ rośnie liczba hakerów wykorzystujących AI do udoskonalania swoich phishingowych e-maili oraz ataków z wykorzystaniem deepfake.

Na konferencji Black Hat kilka lat temu, singapurska Agencja Technologii Rządowych (GovTech) przedstawiła wyniki eksperymentu, w którym zespół ds. bezpieczeństwa przeprowadził symulowany atak phishingowy, rozsyłając maile do wewnętrznych użytkowników. Okazało się, że znacznie więcej osób kliknęło w linki umieszczone w mailach phishingowych wygenerowanych przez sztuczną inteligencję niż w tych, które napisał człowiek.

Na początku tego roku, pracownik działu finansowego międzynarodowej firmy padł ofiarą technologii deepfake, którą cyberprzestępcy wykorzystali, aby podczas wideokonferencji podszyć się pod dyrektora finansowego. W efekcie wprowadzony w błąd pracownik przelał oszustom 25 milionów dolarów.

Dlatego zaistniała potrzeba utworzenia CoSAI. Jak wspomniano wcześniej, jednym z kluczowych obszarów, na których skupia się koalicja, jest bezpieczeństwo łańcucha dostaw oprogramowania dla systemów AI. Obejmuje on cały cykl życia systemów sztucznej inteligencji, od zbierania danych, przez szkolenie modeli, aż po ich wdrożenie i utrzymanie. Ze względu na złożoność i wzajemne powiązania tego ekosystemu, podatności na cyberataki na którymkolwiek etapie mogą wpłynąć na cały łańcuch.

Systemy AI często funkcjonują dzięki dostarczanym przez zewnętrznych dostawców bibliotekom, frameworkom i komponentom. Takie rozwiązania choć przyspieszają rozwój, mogą prowadzić do powstawania potencjalnych luk w zabezpieczeniach. Z tego powodu kluczowe jest regularne korzystanie z automatycznych narzędzi w celu sprawdzania i rozwiązywania problemów związanych z bezpieczeństwem tych rozwiązań.

Dodatkowo, powszechna dostępność otwartych modeli językowych (LLM) wymaga solidnej weryfikacji źródła ich pochodzenia, jak również integralności modeli oraz zbiorów danych. Należy także korzystać z narzędzi do automatycznego skanowania tych modeli i zbiorów danych pod kątem podatności i obecności złośliwego oprogramowania. Co ważne, LLM-y na urządzeniach mogą zapewniać większe bezpieczeństwo danych, ponieważ obliczenia wykonywane są w pamięci systemu, bez potrzeby łączenia z chmurą.

W przypadku oprogramowania zamkniętego (proprietary software), jego zastrzeżony i niejawny charakter może zapewnić określony poziom ochrony, co utrudnia cyberprzestępcom wykorzystywanie luk. Z drugiej strony, oznacza to, że identyfikacja i naprawa problemów bezpieczeństwa może trwać dłużej.

W przypadku oprogramowania otwartego (open-source software) zyskujemy na współpracy społeczności, ponieważ wiele osób mających wgląd do kodu przyczynia się do szybkiego wykrywania i naprawiania luk w zabezpieczeniach. Niemniej jednak, publiczne ujawnienie kodu może także zdemaskować potencjalne słabe punkty.

Skupienie się CoSAI na zarządzaniu bezpieczeństwem AI jest również bardzo na czasie. Na przykład, w tym roku, Narodowy Instytut Standaryzacji i Technologii (NIST) opublikował dokument opisujący cztery rodzaje ataków na uczenie maszynowe. Obejmują one infekowanie danych, nadużycia danych, ataki na prywatność oraz ataki polegające na ominięciu mechanizmów obronnych systemów predykcyjnych i generatywnych AI.

AI Act wydany przez Unię Europejską także podkreśla potrzebę stosowania środków bezpieczeństwa cybernetycznego, które umożliwiają zapobieganie, wykrywanie, reagowanie i przeciwdziałanie atakom manipulującym zestawem danych szkoleniowych (zatruwanie danych) lub komponentami używanymi do szkolenia (zatruwanie modeli), a także projektowanymi wejściami, które powodują błąd modelu AI (przykłady adwersaryjne lub ominięcie modelu) oraz atakami na poufność czy usterki modelu.

Firmy mogą dzielić się swoim doświadczeniem, uczestnicząc w procesie regulacyjnym oraz prowadząc badania we współpracy z klientami, partnerami, stowarzyszeniami branżowymi oraz instytucjami badawczymi. Wspólne zaangażowanie w innowacje wymaga, aby sztuczna inteligencja była bezpieczna.

Zarządzanie bezpieczeństwem sztucznej inteligencji wymaga wyspecjalizowanych zasobów, aby sprostać wyzwaniom i zagrożeniom związanym z tą technologią. Opracowanie standardowej biblioteki do mapowania ryzyka i kontroli pomaga w osiągnięciu spójnych praktyk w zakresie bezpieczeństwa sztucznej inteligencji w całej branży.

Dodatkowo, lista kontrolna oraz standaryzowany mechanizm oceny dojrzałości bezpieczeństwa AI pozwoliłyby organizacjom samodzielnie przeprowadzić ewaluację własnych środków ochrony. W efekcie firmy mogą zapewnić klientów, że ich produkty bazujące na AI są bezpieczne. Podejście to jest zbieżne z praktykami bezpiecznego cyklu życia oprogramowania (SDLC) stosowanymi już przez organizacje w ramach ocen modelu dojrzałości oprogramowania (SAMM).

Produkty i rozwiązania mogą być wtedy wykorzystywane w aplikacjach, które pomagają organizacjom spełniać wymogi HIPAA, PCI-DSS, RODO, walidację FIPS-140 oraz wspólne kryteria dla produktów. Organizacje powinny korzystać z technologii dostarczanych przez partnerów, takich jak zestawy narzędzi do tworzenia oprogramowania (SDK), interfejsy API oraz narzędzia dla deweloperów. Dzięki takiemu podejściu będą szybko powstawać bezpieczne i skalowalne usługi cyfrowe.

Firmy technologiczne mogą zobowiązać się do tworzenia bezpiecznych rozwiązań AI, które poprawiają produktywność pracowników oraz wdrażanie na urządzeniach brzegowych, poprzez integrację wielopoziomowych zabezpieczeń oraz skupienie się na łatwym zwiększaniu bezpieczeństwa bez uszczerbku dla wydajności.

Podobnie jak w przypadku inicjatyw związanych z cyberbezpieczeństwem i innych działań wymagających koordynacji w całej firmie, organizacje powinny stale rozwijać procesy, zasady, narzędzia i szkolenia dotyczące AI, zapewniając przy tym spójność i zgodność poprzez wewnętrzny model zarządzania typu hub-and-spoke.

Srikrishna Shankavaram, Główny Architekt ds. Cyberbezpieczeństwa, CTO Office, Zebra Technologies

Najnowsze wiadomości

Kwantowy przełom w cyberochronie - nadchodząca dekada przepisze zasady szyfrowania na nowo
Przez długi czas cyfrowe bezpieczeństwo opierało się na prostym założeniu: współczesne komputery potrzebowałyby ogromnych zasobów i wielu lat, aby złamać silne algorytmy szyfrowania. Rozwój technologii kwantowej zaczyna jednak tę regułę podważać, a eksperci przewidują, że w perspektywie 5–10 lat może nadejść „dzień zero”. Jest to moment, w którym zaawansowana maszyna kwantowa będzie w stanie przełamać większość aktualnie stosowanych zabezpieczeń kryptograficznych w czasie liczonym nie w latach, lecz w godzinach.
PSI prezentuje nową identyfikację wizualną
psilogoW ramach realizowanej strategii transformacji PSI Software SE zaprezentowała nową identyfikację wizualną. Odświeżony wizerunek w spójny sposób oddaje technologiczne zaawansowanie firmy, jej głęboką wiedzę branżową oraz silne ukierunkowanie na potrzeby klientów. Zmiany te wzmacniają pozycję PSI jako innowacyjnego lidera technologicznego w obszarze skalowalnych rozwiązań informatycznych opartych na sztucznej inteligencji i chmurze, rozwijanych z myślą o energetyce i przemyśle.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
F5 rozszerza portfolio bezpieczeństwa o narzędzia do ochrony systemów AI w środowiskach enterprise
F5 ogłosiło wprowadzenie dwóch nowych rozwiązań - F5 AI Guardrails oraz F5 AI Red Team - które mają odpowiedzieć na jedno z kluczowych wyzwań współczesnych organizacji: bezpieczne wdrażanie i eksploatację systemów sztucznej inteligencji na dużą skalę. Nowa oferta łączy ochronę działania modeli AI w czasie rzeczywistym z ofensy
Snowflake + OpenAI: AI bliżej biznesu
Snowflake przyspiesza wykorzystanie danych i sztucznej inteligencji w firmach, przenosząc AI z fazy eksperymentów do codziennych procesów biznesowych. Nowe rozwiązania w ramach AI Data Cloud integrują modele AI bezpośrednio z danymi, narzędziami deweloperskimi i warstwą semantyczną. Partnerstwo z OpenAI, agent Cortex Code, Semantic View Autopilot oraz rozwój Snowflake Postgres pokazują, jak budować skalowalne, bezpieczne i mierzalne wdrożenia AI w skali całej organizacji.



Najnowsze artykuły

Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
SENTEWspółczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Migracja z SAP ECC na S4 HANA: Ryzyka, korzyści i alternatywne rozwiązania
W ostatnich latach wiele firm, które korzystają z systemu SAP ECC (Enterprise Central Component), stoi przed decyzją o przejściu na nowszą wersję — SAP S4 HANA. W obliczu końca wsparcia dla ECC w 2030 roku, temat ten staje się coraz bardziej aktualny. Przemiany technologiczne oraz rosnące oczekiwania związane z integracją nowych funkcji, jak sztuczna inteligencja (AI), skłaniają do refleksji nad tym, czy warto podjąć tak dużą zmianę w architekturze systemu. Przyjrzyjmy się głównym powodom, dla których firmy rozważają migrację do S4 HANA, ale także argumentom,  które mogą przemawiać za pozostaniem przy dotychczasowym systemie ECC, przynajmniej na krótki okres.
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
BPSC FORTERROZysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Ponad połowa cyberataków zaczyna się od błędu człowieka
Ponad 2/3 firm w Polsce odnotowała w zeszłym roku co najmniej 1 incydent naruszenia bezpieczeństwa . Według danych Unit 42, zespołu analitycznego Palo Alto Networks, aż 60% ataków rozpoczyna się od działań wymierzonych w pracowników – najczęściej pod postacią phishingu i innych form inżynierii społecznej . To pokazuje, że w systemie ochrony organizacji pracownicy są kluczowym ogniwem – i że firmy muszą nie tylko edukować, ale też konsekwentnie egzekwować zasady cyberhigieny. Warto o tym pamiętać szczególnie teraz, w październiku, gdy obchodzimy Europejski Miesiąc Cyberbezpieczeństwa.
MES - holistyczne zarządzanie produkcją
Nowoczesna produkcja wymaga precyzji, szybkości i pełnej kontroli nad przebiegiem procesów. Rosnąca złożoność zleceń oraz presja kosztowa sprawiają, że ręczne raportowanie i intuicyjne zarządzanie coraz częściej okazują się niewystarczające. Firmy szukają rozwiązań, które umożliwiają im widzenie produkcji „na żywo”, a nie z opóźnieniem kilku godzin czy dni. W tym kontekście kluczową rolę odgrywają narzędzia, które porządkują informacje i pozwalają reagować natychmiast, zamiast po fakcie.

Przeczytaj Również

Infrastruktura w punkcie zwrotnym - 5 prognoz kształtujących AI, odporność i suwerenność danych w 2026 roku

W 2026 roku zyskają firmy, które traktują infrastrukturę nie jako obszar generujący koszty, lecz ja… / Czytaj więcej

Tylko 7% firm w Europie wykorzystuje w pełni potencjał AI

72% firm w regionie EMEA uznaje rozwój narzędzi bazujących na sztucznej inteligencji za priorytet s… / Czytaj więcej

Chmura publiczna w Unii Europejskiej – między innowacją a odpowiedzialnością za dane

Transformacja cyfrowa w Europie coraz mocniej opiera się na chmurze publicznej, która stała się fun… / Czytaj więcej

Jak Cisco pomaga Europie spłacić dług technologiczny w krytycznej infrastrukturze sieciowej

Cyfryzacja, rozwój sztucznej inteligencji i nadchodzące komputery kwantowe wymagają od Europy stabi… / Czytaj więcej

MŚP inwestują w AI, kompetencje pracowników nadal wyzwaniem

Europejskie małe i średnie firmy coraz śmielej inwestują w sztuczną inteligencję, ale to kompetencj… / Czytaj więcej

AP EU AI Cloud: nowy standard suwerennej chmury i AI dla europejskich organizacji

SAP EU AI Cloud to zapowiedziana 27 listopada 2025 r. platforma, która łączy dotychczasowe inicjaty… / Czytaj więcej