Przejdź do głównej treści

Sztuczna inteligencja może być nieobiektywna

Katgoria: IT SOLUTIONS / Utworzono: 11 marzec 2021
Sztuczna inteligencja może być nieobiektywna
Firmy i instytucje planujące wdrożenie sztucznej inteligencji, oprócz aspektów związanych z etyką i ochroną danych osobowych, muszą również zadbać o standardy, które wyeliminują ryzyko szkodliwych decyzji podejmowanych przez systemy AI.

REKLAMA
ASSECO KSEF
 
Sztuczna inteligencja to technologia stworzona przez człowieka, który ma w swojej naturze tendencję do uprzedzeń i bycia stronniczym. Na co dzień korzystamy z konstrukcji myślowych, uproszczonych schematów i wyobrażeń, które pomagają nam porządkować otaczającą nas rzeczywistość. Twórcy rozwiązań AI muszą brać pod uwagę te uwarunkowania, gdyż subiektywna interpretacja danych może mieć wpływ na informacje wyjściowe, którymi zasilane są systemy AI. Dane dobrane w sposób tendencyjny prowadzą do błędnych, a nawet szkodliwych wyników. W związku z dynamicznym rozwojem i rosnącym wykorzystaniem systemów AI w różnych sektorach gospodarki, ważna jest świadomość tych zagrożeń i praca nad ich ograniczeniem.

Błędy w edukacji uczenia maszynowego

Uczenie maszynowe, będące dziedziną sztucznej inteligencji, pozwala na tworzenie samodoskonalących się systemów, które „uczą się” na podstawie dostarczanych danych. Technologia ta początkowo korzysta z danych treningowych, dzięki czemu można dopracowywać modele analityczne, tak aby z biegiem czasu prezentowały coraz bardziej precyzyjne wyniki. Pierwsze pakiety informacji są przygotowywane przez człowieka, który już na początku decyduje o doborze danych wyjściowych i kierunku, w którym będzie ewoluował system. Jeżeli już w początkowej fazie rozwoju modeli system przyjmie błędne założenia, jego późniejsze wnioski również nie będą właściwe.

Zasilenie systemu niepełnymi lub błędnymi danymi, które wpłyną na to, że wyniki analiz będą stronnicze to dopiero początek problemu. Nie udało się jeszcze opracować rozwiązań, które potrafiłyby same się naprawiać. Przeciwnie, istnieje duża szansa, że system będzie stawał się coraz mniej obiektywny. Technologia, którą obecnie dysponujemy, ogromna moc obliczeniowa i zaawansowane algorytmy pozwalają maszynom podejmować tysiące decyzji w ciągu minuty. Niestety oznacza to, że małe błędy szybko się rozrastają i z czasem zaczynają stanowić realne zagrożenie dla wyników analiz, które mogą prowadzić do złych decyzji.

Różnorodność w projektach AI

Odpowiedzialny rozwój sztucznej inteligencji wymaga różnorodności. Wprowadzane dane muszą uwzględniać na przykład różne grupy wiekowe, etniczne czy społeczne. Dlatego już na etapie tworzenia zespołów pracujących przy projektach AI, należy o to zadbać. Takie podejście umożliwia spojrzenie na dany problem z różnych perspektyw, co przełoży się na większą różnorodność wprowadzanych danych.

Brak różnorodności już na etapie zasilania systemu danymi może sprawić, że użytkownicy końcowi nie będą mogli korzystać z rozwiązania AI, np. gdy system nie uwzględnia różnic pomiędzy poszczególnymi akcentami. Użytkownik z Irlandii będzie mówił po angielsku zupełnie inaczej niż Amerykanin. Korzystając z chatbota może mieć trudności z załatwieniem swojej sprawy, gdy system nie rozpozna jego akcentu. Takie doświadczenie skutecznie zniechęci go do dalszych kontaktów z firmą, co w szerszej perspektywie może stanowić poważną przeszkodę w budowaniu dobrych doświadczeń i lojalności klienta. Jak wynika z badania SAS Experience 2030: Has covid-19 created a new kind of customer?, 34% konsumentów w regionie EMEA jest gotowych skorzystać z usług konkurencji już po pierwszym złym doświadczeniu z daną firmą.

To jeden z przykładów, który obrazuje ryzyka i wyzwania, które muszą być brane pod uwagę przy projektowaniu, rozwoju, wdrażaniu i wykorzystaniu sztucznej inteligencji. Dlatego warto być na bieżąco, poszerzać wiedzę i śledzić najlepsze praktyki w zakresie rozwoju rozwiązań AI.

Źródło: SAS Institute

Najnowsze wiadomości

Kwantowy przełom w cyberochronie - nadchodząca dekada przepisze zasady szyfrowania na nowo
Przez długi czas cyfrowe bezpieczeństwo opierało się na prostym założeniu: współczesne komputery potrzebowałyby ogromnych zasobów i wielu lat, aby złamać silne algorytmy szyfrowania. Rozwój technologii kwantowej zaczyna jednak tę regułę podważać, a eksperci przewidują, że w perspektywie 5–10 lat może nadejść „dzień zero”. Jest to moment, w którym zaawansowana maszyna kwantowa będzie w stanie przełamać większość aktualnie stosowanych zabezpieczeń kryptograficznych w czasie liczonym nie w latach, lecz w godzinach.
PSI prezentuje nową identyfikację wizualną
psilogoW ramach realizowanej strategii transformacji PSI Software SE zaprezentowała nową identyfikację wizualną. Odświeżony wizerunek w spójny sposób oddaje technologiczne zaawansowanie firmy, jej głęboką wiedzę branżową oraz silne ukierunkowanie na potrzeby klientów. Zmiany te wzmacniają pozycję PSI jako innowacyjnego lidera technologicznego w obszarze skalowalnych rozwiązań informatycznych opartych na sztucznej inteligencji i chmurze, rozwijanych z myślą o energetyce i przemyśle.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
F5 rozszerza portfolio bezpieczeństwa o narzędzia do ochrony systemów AI w środowiskach enterprise
F5 ogłosiło wprowadzenie dwóch nowych rozwiązań - F5 AI Guardrails oraz F5 AI Red Team - które mają odpowiedzieć na jedno z kluczowych wyzwań współczesnych organizacji: bezpieczne wdrażanie i eksploatację systemów sztucznej inteligencji na dużą skalę. Nowa oferta łączy ochronę działania modeli AI w czasie rzeczywistym z ofensy
Snowflake + OpenAI: AI bliżej biznesu
Snowflake przyspiesza wykorzystanie danych i sztucznej inteligencji w firmach, przenosząc AI z fazy eksperymentów do codziennych procesów biznesowych. Nowe rozwiązania w ramach AI Data Cloud integrują modele AI bezpośrednio z danymi, narzędziami deweloperskimi i warstwą semantyczną. Partnerstwo z OpenAI, agent Cortex Code, Semantic View Autopilot oraz rozwój Snowflake Postgres pokazują, jak budować skalowalne, bezpieczne i mierzalne wdrożenia AI w skali całej organizacji.



Najnowsze artykuły

Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
SENTEWspółczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Migracja z SAP ECC na S4 HANA: Ryzyka, korzyści i alternatywne rozwiązania
W ostatnich latach wiele firm, które korzystają z systemu SAP ECC (Enterprise Central Component), stoi przed decyzją o przejściu na nowszą wersję — SAP S4 HANA. W obliczu końca wsparcia dla ECC w 2030 roku, temat ten staje się coraz bardziej aktualny. Przemiany technologiczne oraz rosnące oczekiwania związane z integracją nowych funkcji, jak sztuczna inteligencja (AI), skłaniają do refleksji nad tym, czy warto podjąć tak dużą zmianę w architekturze systemu. Przyjrzyjmy się głównym powodom, dla których firmy rozważają migrację do S4 HANA, ale także argumentom,  które mogą przemawiać za pozostaniem przy dotychczasowym systemie ECC, przynajmniej na krótki okres.
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
BPSC FORTERROZysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Ponad połowa cyberataków zaczyna się od błędu człowieka
Ponad 2/3 firm w Polsce odnotowała w zeszłym roku co najmniej 1 incydent naruszenia bezpieczeństwa . Według danych Unit 42, zespołu analitycznego Palo Alto Networks, aż 60% ataków rozpoczyna się od działań wymierzonych w pracowników – najczęściej pod postacią phishingu i innych form inżynierii społecznej . To pokazuje, że w systemie ochrony organizacji pracownicy są kluczowym ogniwem – i że firmy muszą nie tylko edukować, ale też konsekwentnie egzekwować zasady cyberhigieny. Warto o tym pamiętać szczególnie teraz, w październiku, gdy obchodzimy Europejski Miesiąc Cyberbezpieczeństwa.
MES - holistyczne zarządzanie produkcją
Nowoczesna produkcja wymaga precyzji, szybkości i pełnej kontroli nad przebiegiem procesów. Rosnąca złożoność zleceń oraz presja kosztowa sprawiają, że ręczne raportowanie i intuicyjne zarządzanie coraz częściej okazują się niewystarczające. Firmy szukają rozwiązań, które umożliwiają im widzenie produkcji „na żywo”, a nie z opóźnieniem kilku godzin czy dni. W tym kontekście kluczową rolę odgrywają narzędzia, które porządkują informacje i pozwalają reagować natychmiast, zamiast po fakcie.

Przeczytaj Również

Technologie na żądanie zyskują na popularności, ale za jaką cenę?

W erze dynamicznej transformacji cyfrowej organizacje coraz chętniej sięgają po technologie dostępn… / Czytaj więcej

Jaki serwer dla ERP, CRM czy BI? VPS, dedykowany, chmura a może on-premise?

Wybór właściwej infrastruktury serwerowej dla systemów ERP, CRM czy Business Intelligence to jedna… / Czytaj więcej

Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?

Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozprosz… / Czytaj więcej

Nowe narzędzie, nowe możliwości – Adrian Guzy z CTDI o innowacyjności, kulturze pracy z danymi i analityce w Microsoft Fabric

W nowej siedzibie CTDI w Sękocinie Starym pod Warszawą tafle szkła odbijają poranne słońce, a wnętr… / Czytaj więcej

Hiperautomatyzacja: kolejny etap rewolucji czy buzzword?

Automatyzacja to już nie tylko boty i proste skrypty – kolejnym krokiem jest hiperautomatyzacja, kt… / Czytaj więcej

Jak agenci AI zrewolucjonizują przemysł, zwiększą produktywność i obniżą koszty

Obecnie każda firma chce być firmą AI, ale według McKinsey tylko 1% przedsiębiorstw uważa, że osiąg… / Czytaj więcej