Przejdź do głównej treści

Data Science paliwem napędowym koncepcji Przemysłu 4.0

Katgoria: BUSINESS INTELLIGENCE / Utworzono: 11 luty 2019
Data Science paliwem napędowym koncepcji Przemysłu 4.0
Optymalizacja, monetyzacja i analityka. Pod znakiem tych pojęć będzie się rozwijać w Polsce coraz więcej firm z sektora przemysłowego, wynika z analizy firmy TogetherData. Jednym z kluczowych trendów, który przyczyni się w 2019 roku do szerszej realizacji koncepcji Przemysłu 4.0 wśród polskich przedsiębiorstw będzie zbieranie, agregacja i analiza dużych zbiorów danych.

REKLAMA
ASSECO KSEF
 
Natomiast standardem mającym na celu wsparcie procesów decyzyjnych, identyfikacji nieefektywności oraz maksymalizacji jakości produkcji będzie Data Science – jedna z gałęzi Big Data. Odpowiednie wdrożenie tych działań może poprawić wyniki poszczególnych działów nawet o 15% – przewidują analitycy z TogetherData.

Big Data, a Data Science

Data Science to dziedzina analityki szerokich strumieni danych, którą zaczyna się określać mianem „nauki o danych”. Jest to proces pozyskiwania, analizowania, wizualizacji i wnioskowania z zarówno ustrukturyzowanych jak i nieustrukturyzowanych danych, z użyciem m.in. takich technologii jak uczenie maszynowe i analiza predykcyjna. „Nauka o danych” w przeciwieństwie do Big Data, nie tylko agreguje i przetwarza dane, ale także tworzy całościowy model ich analizy, ukierunkowanej pod uzyskanie odpowiednich informacji i wniosków. W ciągu najbliższych dwóch lat zapotrzebowanie na wdrożenie systemów Data Science w Polsce wzrośnie nawet o 40 proc., wynika z szacunków firmy analitycznej TogetherData. Największy popyt będzie panował wśród firm z sektora produkcyjnego.

Big Data w przemyśle to jedynie prosta wizualizacja danych pozyskanych przykładowo z czujników monitorujących awarię na linii produkcyjnej. Natomiast Data Science, czyli „nauka o danych” wyznacza cele do osiągnięcia, determinuje rodzaj danych potrzebnych do analizy oraz dobór modelu statystycznego. – mówi Michał Grams, Prezes Zarządu TogetherData. W średniej wielkości zakładzie produkcyjnym z branży FMCG liczba zdarzeń podlegających ciągłej zmianie wartości jest liczona w tysiącach na sekundę. Dzięki odpowiedniemu zastosowaniu algorytmów, można przewidzieć jakie są główne czynniki wpływające na obniżenie bądź zwiększenie jakości produktu.


Data Science – kluczowy element Przemysłu 4.0

Dzięki zastosowaniu odpowiednich algorytmów systemy Data Sciecne są w stanie identyfikować wąskie gardła produkcji oraz zredukować występowanie awarii oraz przestojów w działaniu linii produkcyjnej. Zdaniem ekspertów TogetherData, analiza danych historycznych i aktualnych pochodzących z raportów dotyczących kontroli jakości oraz przebiegu procesów produkcji, umożliwia zwiększenie efektywności produkcji o średnio 15 proc. Natomiast analiza predykcyjna informacji pochodzących z inteligentnych czujników oraz sensorów rozlokowanych na linii produkcyjnej przyczynia się do optymalizacji kosztów produkcyjnych, w tym do zmniejszenia o średnio 20 proc. kosztu utrzymania i serwisowania maszyn.

Analiza danych dotyczących planowania oraz zapotrzebowania na dostawy, informacjach o pogodzie, czy remontach dróg pozwala na zwiększenie terminowości o średnio 10 proc., oraz optymalizację kosztów logistycznych o średnio 15 proc. Możliwa staje się predykcja zapotrzebowania oraz efektywniejsze zaplanowanie dostarczenia zaopatrzenia, a także optymalizacja stanów magazynowych. Dzięki integracji danych z każdego etapu życia produktu, możliwe jest podniesienia jakości w łańcuchu dostaw o blisko 10 proc., wynika z szacunków TogetherData.

Zastosowanie narzędzi Data Science umożliwia identyfikację głównych czynników wpływających na obniżenie, bądź zwiększenie jakości produktów poprzez monitorowanie i analizę danych dot. procesu produkcji, jakości wyrobów, ilości wad w danych partiach towarów. Po agregacji tych danych z danymi dotyczącymi zakupów czy logistyki możliwa będzie historyczna analiza pochodzenia surowca, jego jakości oraz predykcja wskaźników wpływających na niższą niż średnia jakość produktu końcowego. – mówi Michał Grams, Prezes TogetherData.


Analiza prognozy pogody i zbiorów z lat poprzednich daje firmom z branży produkcji żywności możliwość przewidywania wolumenów produkcji. Inteligentne algorytmy są w stanie zautomatyzować proces oceny ryzyka niewypłacalności potencjalnych kontrahentów i klientów, co umożliwia otrzymanie prognoz o ewentualnym opóźnieniu w płatnościach. Z danych TogetherData wynika także, że zastosowanie narzędzi Data Science przyczynia się do efektywnej estymacji marży produktowej oraz audytu wydatków marketingowych jak i automatyzacji predykcji ROI z działań reklamowych.

Główne wyzwania

Różnorodność dostępnych źródeł danych stwarza trudności w stosowaniu i wdrażaniu systemów analitycznych. Zdaniem ekspertów TogetherData, tylko cztery na dziesięć firm w Polsce nie skarży się na brak specjalistycznej wiedzy, aby móc wykorzystać duże zbiory danych do dalszej analizy. Uporządkowanie zetabajtów informacji pochodzących zarówno ze źródeł online jak i offline, jest największym wyzwaniem dla podmiotów z branży przemysłowej. Wynika to z faktu, iż wciąż poziom cyfryzacji polskich przedsiębiorstw jest zatrważająco niski. Badania przeprowadzone w 2018 roku przez firmę ASD Consulting dowodzą, iż 84 proc. firm z branży produkcyjnej gromadzi informacje ręcznie, a co czwarte przedsiębiorstwo przetwarza je analogowo w formie papierowej. Systemami skanerowymi i kodami kreskowymi wspomaga się jedynie 16 proc. firm, a zautomatyzowane procesy gromadzenia cyfrowych informacji z cyklu produkcyjnego wykorzystuje niespełna 12 proc. przedsiębiorstw. Największą barierą blokującą proces „datyzacji” polskiego przemysłu jest opór pracowników - wynika z badania ASD Consulting.

Wyzwaniem dla polskich przedsiębiorców będzie nie tylko sama kwestia wdrożenia narzędzi analizujących dane, ale także sprytnej i efektywnej strategii ich badania i wykorzystania. Moda na Big Data zmieni się w trend Data Science. – tłumaczy Michał Grams. - Firmy muszą zmienić swoje podejście. Nie liczy się bowiem ilość badanych i wykorzystanych biznesowo danych, lecz technologia, rodzaj i forma narzędzi używanej do analizy – dodaje. Zdaniem ekspertów z TogetherData agregacja danych z wielu źródeł oraz wygenerowanie wysokopoziomowej, między-departamentowej bazy pozwala zwiększyć wyniki działów produkcji, jakości czy logistyki o średnio 15%.


Źródło: TogetherData

Najnowsze wiadomości

Kwantowy przełom w cyberochronie - nadchodząca dekada przepisze zasady szyfrowania na nowo
Przez długi czas cyfrowe bezpieczeństwo opierało się na prostym założeniu: współczesne komputery potrzebowałyby ogromnych zasobów i wielu lat, aby złamać silne algorytmy szyfrowania. Rozwój technologii kwantowej zaczyna jednak tę regułę podważać, a eksperci przewidują, że w perspektywie 5–10 lat może nadejść „dzień zero”. Jest to moment, w którym zaawansowana maszyna kwantowa będzie w stanie przełamać większość aktualnie stosowanych zabezpieczeń kryptograficznych w czasie liczonym nie w latach, lecz w godzinach.
PSI prezentuje nową identyfikację wizualną
psilogoW ramach realizowanej strategii transformacji PSI Software SE zaprezentowała nową identyfikację wizualną. Odświeżony wizerunek w spójny sposób oddaje technologiczne zaawansowanie firmy, jej głęboką wiedzę branżową oraz silne ukierunkowanie na potrzeby klientów. Zmiany te wzmacniają pozycję PSI jako innowacyjnego lidera technologicznego w obszarze skalowalnych rozwiązań informatycznych opartych na sztucznej inteligencji i chmurze, rozwijanych z myślą o energetyce i przemyśle.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
F5 rozszerza portfolio bezpieczeństwa o narzędzia do ochrony systemów AI w środowiskach enterprise
F5 ogłosiło wprowadzenie dwóch nowych rozwiązań - F5 AI Guardrails oraz F5 AI Red Team - które mają odpowiedzieć na jedno z kluczowych wyzwań współczesnych organizacji: bezpieczne wdrażanie i eksploatację systemów sztucznej inteligencji na dużą skalę. Nowa oferta łączy ochronę działania modeli AI w czasie rzeczywistym z ofensy
Snowflake + OpenAI: AI bliżej biznesu
Snowflake przyspiesza wykorzystanie danych i sztucznej inteligencji w firmach, przenosząc AI z fazy eksperymentów do codziennych procesów biznesowych. Nowe rozwiązania w ramach AI Data Cloud integrują modele AI bezpośrednio z danymi, narzędziami deweloperskimi i warstwą semantyczną. Partnerstwo z OpenAI, agent Cortex Code, Semantic View Autopilot oraz rozwój Snowflake Postgres pokazują, jak budować skalowalne, bezpieczne i mierzalne wdrożenia AI w skali całej organizacji.



Najnowsze artykuły

Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
SENTEWspółczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Migracja z SAP ECC na S4 HANA: Ryzyka, korzyści i alternatywne rozwiązania
W ostatnich latach wiele firm, które korzystają z systemu SAP ECC (Enterprise Central Component), stoi przed decyzją o przejściu na nowszą wersję — SAP S4 HANA. W obliczu końca wsparcia dla ECC w 2030 roku, temat ten staje się coraz bardziej aktualny. Przemiany technologiczne oraz rosnące oczekiwania związane z integracją nowych funkcji, jak sztuczna inteligencja (AI), skłaniają do refleksji nad tym, czy warto podjąć tak dużą zmianę w architekturze systemu. Przyjrzyjmy się głównym powodom, dla których firmy rozważają migrację do S4 HANA, ale także argumentom,  które mogą przemawiać za pozostaniem przy dotychczasowym systemie ECC, przynajmniej na krótki okres.
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
BPSC FORTERROZysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Ponad połowa cyberataków zaczyna się od błędu człowieka
Ponad 2/3 firm w Polsce odnotowała w zeszłym roku co najmniej 1 incydent naruszenia bezpieczeństwa . Według danych Unit 42, zespołu analitycznego Palo Alto Networks, aż 60% ataków rozpoczyna się od działań wymierzonych w pracowników – najczęściej pod postacią phishingu i innych form inżynierii społecznej . To pokazuje, że w systemie ochrony organizacji pracownicy są kluczowym ogniwem – i że firmy muszą nie tylko edukować, ale też konsekwentnie egzekwować zasady cyberhigieny. Warto o tym pamiętać szczególnie teraz, w październiku, gdy obchodzimy Europejski Miesiąc Cyberbezpieczeństwa.
MES - holistyczne zarządzanie produkcją
Nowoczesna produkcja wymaga precyzji, szybkości i pełnej kontroli nad przebiegiem procesów. Rosnąca złożoność zleceń oraz presja kosztowa sprawiają, że ręczne raportowanie i intuicyjne zarządzanie coraz częściej okazują się niewystarczające. Firmy szukają rozwiązań, które umożliwiają im widzenie produkcji „na żywo”, a nie z opóźnieniem kilku godzin czy dni. W tym kontekście kluczową rolę odgrywają narzędzia, które porządkują informacje i pozwalają reagować natychmiast, zamiast po fakcie.

Przeczytaj Również

Jak przyspieszyć transformację energetyczną i dekarbonizację dzięki inteligentnej integracji danych w chmurze?

Odpowiedzią jest Snowflake Energy Solutions – nowa oferta łącząca ponad 30 rozwiązań partnerskich w… / Czytaj więcej

Jak skutecznie wdrożyć Power BI w organizacji?

Wdrożenie narzędzi analitycznych w firmie to nie tylko kwestia technologii, ale także zmiany podejś… / Czytaj więcej

Czy systemy Business Intelligence nadają się do małych i średnich firm?

W świecie biznesu coraz więcej mówi się o danych. Firmy gromadzą je w ogromnych ilościach – od arku… / Czytaj więcej

Jak Business Intelligence rewolucjonizuje zarządzanie sieciami dealerskimi – rozwiązania od One Support

W branży motoryzacyjnej zmiany zachodzą szybciej niż kiedykolwiek. Dynamiczne wahania cen, rosnąca… / Czytaj więcej

Narzędzia BI dla systemów ERP: Jak wybrać odpowiednie rozwiązanie?

W ostatnim czasie dane stały się jednym z najważniejszych aktywów biznesowych. Sam system ERP pozwa… / Czytaj więcej

Business Intelligence w praktyce – jak system BI One zmienia sposób zarządzania firmą

W erze cyfrowej transformacji dane stały się najcenniejszym zasobem każdej organizacji. Ich skutecz… / Czytaj więcej