Jakie są największe wyzwania przy tworzeniu inteligentnych aplikacji
Katgoria: IT Solutions / Utworzono: 23 lipiec 2024
Sztuczna inteligencja (AI) stała się codziennością w świecie IT, a programiści coraz częściej tworzą produkty, które ją wykorzystują. Dziś nie zastanawiamy się już, czy używać AI, ale jak zrobić to najlepiej. Jednak tworzenie aplikacji opartych na AI niesie ze sobą szereg praktycznych wyzwań. Jak sobie z nimi poradzić?
Budowanie aplikacji z wykorzystaniem sztucznej inteligencji to fascynujące, ale i wymagające zadanie. Często stajemy przed wyzwaniami takimi jak ograniczona wiedza modeli językowych, wysokie koszty trenowania własnych modeli czy kontrolowanie kreatywności AI. Każdy projekt, nad którym pracowaliśmy, nauczył nas czegoś nowego o tych wyzwaniach i najlepszych praktykach, które pomagają je przezwyciężyć.
LLM nie wszystko ci powie
Jednym z największych wyzwań jest ograniczona wiedza dużych modeli językowych (LLM). Modele te są trenowane na ogromnych zbiorach danych, ale ich wiedza może być niewystarczająca, gdy chcemy, aby aplikacja odpowiadała na specyficzne pytania biznesowe. Integracja wiedzy specyficznej właściwej dla danej firmy oraz zapewnienie aktualności tych danych to kluczowe wyzwania. Niestety trenowanie własnych modeli od podstaw lub „dotrenowywanie” bazowych, wiąże się z ogromnymi kosztami. Bardziej efektywnym podejściem jest wykorzystanie istniejących modeli i uzupełnianie ich o specyficzne dane biznesowe za pomocą metod takich jak uczenie kontekstowe. Dzięki temu możemy znacząco obniżyć koszty, jednocześnie dostosowując model do naszych potrzeb.
Metoda ta polega na dołączaniu odpowiednich dokumentów do zapytania, co pozwala modelowi wykorzystać dodatkową wiedzę podczas generowania odpowiedzi. Jednak rozmiar promptu jest ograniczony, co oznacza, że możemy przekazać tylko ograniczoną ilość informacji na raz. Aby poradzić sobie z tym ograniczeniem, możemy zastosować technikę Retrieval Augmented Generation (RAG), która polega na umieszczaniu w prompcie tylko tych fragmentów dokumentów, które są istotne z punktu widzenia zadawanego pytania. Alternatywnie, można użyć modeli z rozszerzonym oknem kontekstowym, które pozwalają na obsługę większych promptów. Jednak nawet te rozwiązania mają swoje ograniczenia i wymagają odpowiedniego zarządzania informacjami, aby zapewnić wysoką jakość generowanych odpowiedzi.
Kreatywność kontrolowana
Kolejnym wyzwaniem jest kontrolowanie kreatywności modeli językowych oraz ograniczenie tzw. halucynacji, czyli generowania zmyślonych informacji. Modele LLM są niezwykle kreatywne, co bywa przydatne w wielu kontekstach. Jednak w zastosowaniach biznesowych, gdzie precyzja i rzetelność są kluczowe, taka kreatywność może być problematyczna. Na przykład, wirtualny asystent odpowiadający na pytania dotyczące procedur firmowych powinien bazować na rzeczywistych dokumentach, a nie generować fikcyjne odpowiedzi. Aby temu zapobiec, można regulować parametry modelu, takie jak temperatura i top_k, które kontrolują poziom kreatywności odpowiedzi. Dodatkowo, można dodać linki do źródłowych dokumentów lub cytaty, aby zwiększyć wiarygodność generowanych odpowiedzi. Ważne jest również, aby model potrafił odpowiedzieć „nie wiem” zamiast wymyślać odpowiedź w sytuacjach, gdy nie może znaleźć odpowiedniej informacji.
Wykorzystanie wektorowych reprezentacji i baz danych
Wektorowe reprezentacje (embeddings) to kolejne wyzwanie i jednocześnie potężne narzędzie w budowaniu aplikacji opartych na AI. Embeddings są wektorową reprezentacją znaczenia słów, fragmentów tekstu, a nawet obrazów czy dźwięków, co pozwala na bardziej zaawansowane przetwarzanie i analizę danych. Na przykład dzięki reprezentacjom wektorowym można wyszukiwać kontekstowo zamiast tradycyjnie, w oparciu o słowa kluczowe, a także tworzyć bardziej trafne systemy rekomendacji produktów w oparciu o aktualny koszyk zamówień.
Wektorowe bazy danych, takie jak Pinecone, Amazon Kendra czy Azure AI Search, pozwalają na przechowywanie i efektywne przeszukiwanie wielowymiarowych przestrzeni wektorowych w celu znalezienia podobnych znaczeniowo tekstów. Jednakże, na początkowym etapie budowania aplikacji, kiedy wymagania wydajnościowe nie są jeszcze dokładnie określone, warto rozważyć hybrydowe rozwiązania, takie jak tradycyjne relacyjne bazy danych z rozszerzeniem wektorowym, np. PostgreSQL z pgvector. Takie podejście pozwala na znaczące ograniczenie kosztów chmury przy jednoczesnym zachowaniu elastyczności i wydajności.
Prompt idealny i testowanie
Inżynieria promptów, czyli tworzenie skutecznych zapytań do modeli językowych, to kolejne wyzwanie dla programistów. Treść promptu może zawierać pytanie, instrukcje oraz dodatkowe informacje, które pomagają modelowi lepiej zrozumieć kontekst. To swoiste programowanie w języku naturalnym wymaga znajomości pewnych wzorców, które zapewniają przewidywalne i dokładne odpowiedzi. Podstawowe techniki inżynierii promptów powinien znać każdy, nie tylko programista, a zaawansowane metody, takie jak Chain-of-Thought czy ReAct, umożliwiają złożone wnioskowanie. Jakość danych wejściowych jest kluczowa — ustrukturyzowane dane, w formatach takich jak Markdown, JSON czy HTML, pomagają modelom lepiej zrozumieć kontekst, poprawiając jakość odpowiedzi.
Testowanie aplikacji opartych na AI jest wyzwaniem ze względu na niedeterministyczny charakter modeli językowych (LLM). Powtarzając test dla tego samego wejścia, można otrzymać różne odpowiedzi, co utrudnia ocenę ich jakości. Aby porównać oczekiwane odpowiedzi z generowanymi przez modele, można używać wektorowych reprezentacji i porównywać odległości między nimi. Dzięki temu nawet jeśli odpowiedź jest wyrażona inaczej, ale nadal poprawna, test można uznać za pozytywny. Prompty muszą być dokładnie sprawdzane, aby uniknąć błędów i nieprzewidywalnych rezultatów, które mogą negatywnie wpłynąć na działanie aplikacji.
Bezpieczeństwo
Bezpieczeństwo aplikacji AI to kluczowy aspekt, który nie może być pominięty. Wysyłając treści do modeli językowych, musimy zadbać o to, aby nie zawierały one niepożądanych instrukcji, które mogłyby ujawnić poufne informacje lub skierować rozmowę na nieodpowiednie tematy (tzw. prompt injection). Podobnie, generowane przez modele odpowiedzi muszą być sprawdzane pod kątem treści, aby zapobiec przypadkowemu ujawnieniu poufnych danych lub generowaniu odpowiedzi, które mogłyby zaszkodzić reputacji firmy. Na szczęście istnieją narzędzia, zarówno komercyjne, jak i open source, które pomagają skutecznie wdrażać środki bezpieczeństwa w aplikacjach AI.
Tworzenie aplikacji opartych na sztucznej inteligencji to proces pełen wyzwań, ale także ogromnych możliwości. Kluczowe jest zrozumienie i odpowiednie zarządzanie tymi wyzwaniami, aby maksymalnie wykorzystać potencjał AI. Dzięki doświadczeniom i najlepszym praktykom, programiści mogą skutecznie budować inteligentne rozwiązania, które przynoszą realne korzyści biznesowe.
Źródło: Capgemini
LLM nie wszystko ci powie
Jednym z największych wyzwań jest ograniczona wiedza dużych modeli językowych (LLM). Modele te są trenowane na ogromnych zbiorach danych, ale ich wiedza może być niewystarczająca, gdy chcemy, aby aplikacja odpowiadała na specyficzne pytania biznesowe. Integracja wiedzy specyficznej właściwej dla danej firmy oraz zapewnienie aktualności tych danych to kluczowe wyzwania. Niestety trenowanie własnych modeli od podstaw lub „dotrenowywanie” bazowych, wiąże się z ogromnymi kosztami. Bardziej efektywnym podejściem jest wykorzystanie istniejących modeli i uzupełnianie ich o specyficzne dane biznesowe za pomocą metod takich jak uczenie kontekstowe. Dzięki temu możemy znacząco obniżyć koszty, jednocześnie dostosowując model do naszych potrzeb.
Metoda ta polega na dołączaniu odpowiednich dokumentów do zapytania, co pozwala modelowi wykorzystać dodatkową wiedzę podczas generowania odpowiedzi. Jednak rozmiar promptu jest ograniczony, co oznacza, że możemy przekazać tylko ograniczoną ilość informacji na raz. Aby poradzić sobie z tym ograniczeniem, możemy zastosować technikę Retrieval Augmented Generation (RAG), która polega na umieszczaniu w prompcie tylko tych fragmentów dokumentów, które są istotne z punktu widzenia zadawanego pytania. Alternatywnie, można użyć modeli z rozszerzonym oknem kontekstowym, które pozwalają na obsługę większych promptów. Jednak nawet te rozwiązania mają swoje ograniczenia i wymagają odpowiedniego zarządzania informacjami, aby zapewnić wysoką jakość generowanych odpowiedzi.
Kreatywność kontrolowana
Kolejnym wyzwaniem jest kontrolowanie kreatywności modeli językowych oraz ograniczenie tzw. halucynacji, czyli generowania zmyślonych informacji. Modele LLM są niezwykle kreatywne, co bywa przydatne w wielu kontekstach. Jednak w zastosowaniach biznesowych, gdzie precyzja i rzetelność są kluczowe, taka kreatywność może być problematyczna. Na przykład, wirtualny asystent odpowiadający na pytania dotyczące procedur firmowych powinien bazować na rzeczywistych dokumentach, a nie generować fikcyjne odpowiedzi. Aby temu zapobiec, można regulować parametry modelu, takie jak temperatura i top_k, które kontrolują poziom kreatywności odpowiedzi. Dodatkowo, można dodać linki do źródłowych dokumentów lub cytaty, aby zwiększyć wiarygodność generowanych odpowiedzi. Ważne jest również, aby model potrafił odpowiedzieć „nie wiem” zamiast wymyślać odpowiedź w sytuacjach, gdy nie może znaleźć odpowiedniej informacji.
Wykorzystanie wektorowych reprezentacji i baz danych
Wektorowe reprezentacje (embeddings) to kolejne wyzwanie i jednocześnie potężne narzędzie w budowaniu aplikacji opartych na AI. Embeddings są wektorową reprezentacją znaczenia słów, fragmentów tekstu, a nawet obrazów czy dźwięków, co pozwala na bardziej zaawansowane przetwarzanie i analizę danych. Na przykład dzięki reprezentacjom wektorowym można wyszukiwać kontekstowo zamiast tradycyjnie, w oparciu o słowa kluczowe, a także tworzyć bardziej trafne systemy rekomendacji produktów w oparciu o aktualny koszyk zamówień.
Wektorowe bazy danych, takie jak Pinecone, Amazon Kendra czy Azure AI Search, pozwalają na przechowywanie i efektywne przeszukiwanie wielowymiarowych przestrzeni wektorowych w celu znalezienia podobnych znaczeniowo tekstów. Jednakże, na początkowym etapie budowania aplikacji, kiedy wymagania wydajnościowe nie są jeszcze dokładnie określone, warto rozważyć hybrydowe rozwiązania, takie jak tradycyjne relacyjne bazy danych z rozszerzeniem wektorowym, np. PostgreSQL z pgvector. Takie podejście pozwala na znaczące ograniczenie kosztów chmury przy jednoczesnym zachowaniu elastyczności i wydajności.
Prompt idealny i testowanie
Inżynieria promptów, czyli tworzenie skutecznych zapytań do modeli językowych, to kolejne wyzwanie dla programistów. Treść promptu może zawierać pytanie, instrukcje oraz dodatkowe informacje, które pomagają modelowi lepiej zrozumieć kontekst. To swoiste programowanie w języku naturalnym wymaga znajomości pewnych wzorców, które zapewniają przewidywalne i dokładne odpowiedzi. Podstawowe techniki inżynierii promptów powinien znać każdy, nie tylko programista, a zaawansowane metody, takie jak Chain-of-Thought czy ReAct, umożliwiają złożone wnioskowanie. Jakość danych wejściowych jest kluczowa — ustrukturyzowane dane, w formatach takich jak Markdown, JSON czy HTML, pomagają modelom lepiej zrozumieć kontekst, poprawiając jakość odpowiedzi.
Testowanie aplikacji opartych na AI jest wyzwaniem ze względu na niedeterministyczny charakter modeli językowych (LLM). Powtarzając test dla tego samego wejścia, można otrzymać różne odpowiedzi, co utrudnia ocenę ich jakości. Aby porównać oczekiwane odpowiedzi z generowanymi przez modele, można używać wektorowych reprezentacji i porównywać odległości między nimi. Dzięki temu nawet jeśli odpowiedź jest wyrażona inaczej, ale nadal poprawna, test można uznać za pozytywny. Prompty muszą być dokładnie sprawdzane, aby uniknąć błędów i nieprzewidywalnych rezultatów, które mogą negatywnie wpłynąć na działanie aplikacji.
Bezpieczeństwo
Bezpieczeństwo aplikacji AI to kluczowy aspekt, który nie może być pominięty. Wysyłając treści do modeli językowych, musimy zadbać o to, aby nie zawierały one niepożądanych instrukcji, które mogłyby ujawnić poufne informacje lub skierować rozmowę na nieodpowiednie tematy (tzw. prompt injection). Podobnie, generowane przez modele odpowiedzi muszą być sprawdzane pod kątem treści, aby zapobiec przypadkowemu ujawnieniu poufnych danych lub generowaniu odpowiedzi, które mogłyby zaszkodzić reputacji firmy. Na szczęście istnieją narzędzia, zarówno komercyjne, jak i open source, które pomagają skutecznie wdrażać środki bezpieczeństwa w aplikacjach AI.
Tworzenie aplikacji opartych na sztucznej inteligencji to proces pełen wyzwań, ale także ogromnych możliwości. Kluczowe jest zrozumienie i odpowiednie zarządzanie tymi wyzwaniami, aby maksymalnie wykorzystać potencjał AI. Dzięki doświadczeniom i najlepszym praktykom, programiści mogą skutecznie budować inteligentne rozwiązania, które przynoszą realne korzyści biznesowe.
Źródło: Capgemini
Najnowsze wiadomości
Kwantowy przełom w cyberochronie - nadchodząca dekada przepisze zasady szyfrowania na nowo
Przez długi czas cyfrowe bezpieczeństwo opierało się na prostym założeniu: współczesne komputery potrzebowałyby ogromnych zasobów i wielu lat, aby złamać silne algorytmy szyfrowania. Rozwój technologii kwantowej zaczyna jednak tę regułę podważać, a eksperci przewidują, że w perspektywie 5–10 lat może nadejść „dzień zero”. Jest to moment, w którym zaawansowana maszyna kwantowa będzie w stanie przełamać większość aktualnie stosowanych zabezpieczeń kryptograficznych w czasie liczonym nie w latach, lecz w godzinach.
PSI prezentuje nową identyfikację wizualną
W ramach realizowanej strategii transformacji PSI Software SE zaprezentowała nową identyfikację wizualną. Odświeżony wizerunek w spójny sposób oddaje technologiczne zaawansowanie firmy, jej głęboką wiedzę branżową oraz silne ukierunkowanie na potrzeby klientów. Zmiany te wzmacniają pozycję PSI jako innowacyjnego lidera technologicznego w obszarze skalowalnych rozwiązań informatycznych opartych na sztucznej inteligencji i chmurze, rozwijanych z myślą o energetyce i przemyśle.
W ramach realizowanej strategii transformacji PSI Software SE zaprezentowała nową identyfikację wizualną. Odświeżony wizerunek w spójny sposób oddaje technologiczne zaawansowanie firmy, jej głęboką wiedzę branżową oraz silne ukierunkowanie na potrzeby klientów. Zmiany te wzmacniają pozycję PSI jako innowacyjnego lidera technologicznego w obszarze skalowalnych rozwiązań informatycznych opartych na sztucznej inteligencji i chmurze, rozwijanych z myślą o energetyce i przemyśle.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
F5 rozszerza portfolio bezpieczeństwa o narzędzia do ochrony systemów AI w środowiskach enterprise
F5 ogłosiło wprowadzenie dwóch nowych rozwiązań - F5 AI Guardrails oraz F5 AI Red Team - które mają odpowiedzieć na jedno z kluczowych wyzwań współczesnych organizacji: bezpieczne wdrażanie i eksploatację systemów sztucznej inteligencji na dużą skalę. Nowa oferta łączy ochronę działania modeli AI w czasie rzeczywistym z ofensy
Snowflake + OpenAI: AI bliżej biznesu
Snowflake przyspiesza wykorzystanie danych i sztucznej inteligencji w firmach, przenosząc AI z fazy eksperymentów do codziennych procesów biznesowych. Nowe rozwiązania w ramach AI Data Cloud integrują modele AI bezpośrednio z danymi, narzędziami deweloperskimi i warstwą semantyczną. Partnerstwo z OpenAI, agent Cortex Code, Semantic View Autopilot oraz rozwój Snowflake Postgres pokazują, jak budować skalowalne, bezpieczne i mierzalne wdrożenia AI w skali całej organizacji.
Najnowsze artykuły
Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
Współczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Migracja z SAP ECC na S4 HANA: Ryzyka, korzyści i alternatywne rozwiązania
W ostatnich latach wiele firm, które korzystają z systemu SAP ECC (Enterprise Central Component), stoi przed decyzją o przejściu na nowszą wersję — SAP S4 HANA. W obliczu końca wsparcia dla ECC w 2030 roku, temat ten staje się coraz bardziej aktualny. Przemiany technologiczne oraz rosnące oczekiwania związane z integracją nowych funkcji, jak sztuczna inteligencja (AI), skłaniają do refleksji nad tym, czy warto podjąć tak dużą zmianę w architekturze systemu. Przyjrzyjmy się głównym powodom, dla których firmy rozważają migrację do S4 HANA, ale także argumentom, które mogą przemawiać za pozostaniem przy dotychczasowym systemie ECC, przynajmniej na krótki okres.
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
Zysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Ponad połowa cyberataków zaczyna się od błędu człowieka
Ponad 2/3 firm w Polsce odnotowała w zeszłym roku co najmniej 1 incydent naruszenia bezpieczeństwa . Według danych Unit 42, zespołu analitycznego Palo Alto Networks, aż 60% ataków rozpoczyna się od działań wymierzonych w pracowników – najczęściej pod postacią phishingu i innych form inżynierii społecznej . To pokazuje, że w systemie ochrony organizacji pracownicy są kluczowym ogniwem – i że firmy muszą nie tylko edukować, ale też konsekwentnie egzekwować zasady cyberhigieny. Warto o tym pamiętać szczególnie teraz, w październiku, gdy obchodzimy Europejski Miesiąc Cyberbezpieczeństwa.
MES - holistyczne zarządzanie produkcją
Nowoczesna produkcja wymaga precyzji, szybkości i pełnej kontroli nad przebiegiem procesów. Rosnąca złożoność zleceń oraz presja kosztowa sprawiają, że ręczne raportowanie i intuicyjne zarządzanie coraz częściej okazują się niewystarczające. Firmy szukają rozwiązań, które umożliwiają im widzenie produkcji „na żywo”, a nie z opóźnieniem kilku godzin czy dni. W tym kontekście kluczową rolę odgrywają narzędzia, które porządkują informacje i pozwalają reagować natychmiast, zamiast po fakcie.
Przeczytaj Również
Infrastruktura w punkcie zwrotnym - 5 prognoz kształtujących AI, odporność i suwerenność danych w 2026 roku
W 2026 roku zyskają firmy, które traktują infrastrukturę nie jako obszar generujący koszty, lecz ja… / Czytaj więcej
Tylko 7% firm w Europie wykorzystuje w pełni potencjał AI
72% firm w regionie EMEA uznaje rozwój narzędzi bazujących na sztucznej inteligencji za priorytet s… / Czytaj więcej
Chmura publiczna w Unii Europejskiej – między innowacją a odpowiedzialnością za dane
Transformacja cyfrowa w Europie coraz mocniej opiera się na chmurze publicznej, która stała się fun… / Czytaj więcej
Jak Cisco pomaga Europie spłacić dług technologiczny w krytycznej infrastrukturze sieciowej
Cyfryzacja, rozwój sztucznej inteligencji i nadchodzące komputery kwantowe wymagają od Europy stabi… / Czytaj więcej
MŚP inwestują w AI, kompetencje pracowników nadal wyzwaniem
Europejskie małe i średnie firmy coraz śmielej inwestują w sztuczną inteligencję, ale to kompetencj… / Czytaj więcej
AP EU AI Cloud: nowy standard suwerennej chmury i AI dla europejskich organizacji
SAP EU AI Cloud to zapowiedziana 27 listopada 2025 r. platforma, która łączy dotychczasowe inicjaty… / Czytaj więcej

