Przejdź do głównej treści

LPP testuje z PSI Polska projekt cyfrowego magazynu

Katgoria: WMS / Utworzono: 11 maj 2022
LPP testuje z PSI Polska projekt cyfrowego magazynu
Inżynierowie z PSI Polska pracują nad technologią z wykorzystaniem sztucznej inteligencji, która może zrewolucjonizować logistykę. Projekt pod nazwą Warehouse Intelligence uzyskał 3 mln dofinansowania z NCBIR a jeden z jego etapów został pilotażowo wdrożony w LPP. Pierwsze efekty prac są imponujące.


REKLAMA
ASSECO KSEF
 
W Polsce jest niemal 24 mln mkw. powierzchni magazynowych i przemysłowych. Choć inwestycje rosną jak na drożdżach, to presja związana z kosztami paliwa, materiałów i pracy zmusza firmy produkcyjne i handlowe do poszukiwania sposobów optymalizacji. Branża logistyczna wiele obiecuje sobie szczególnie po automatyzacji i robotyzacji magazynów. Z raportu "Logistyka w Polsce" wynika, że 75% firm dostrzega w tym obszarze największe szanse na rozwój logistyki. Do tej pory stosowane technologie oparte o sztuczną inteligencję, miały jednak bardzo wąskie zastosowanie. To może się zmienić dzięki polskim inżynierom i naukowcom. Pracują oni nad technologią, która ma szansę zrewolucjonizować zarządzanie magazynem: sztuczna inteligencja będzie na bieżąco podpowiadać człowiekowi optymalne rozwiązania. Pierwsze testy pokazują, że robi to bardzo skutecznie.

Gra w wyzwanie

Ale zacznijmy od początku. Dwa lata temu inżynierowie z PSI Polska rozpoczęli współpracę z grupą naukowców z Politechniki Poznańskiej i Wrocławskiej, m.in. dr inż. Sławomirem Suszem z Wydziału Mechanicznego dolnośląskiej uczelni. Interdyscyplinarny zespół zaczął eksperymentować ze sztuczną inteligencją oraz uczeniem maszynowym. Choć nie są to nowe technologie, to wykorzystanie ich w logistyce jest wciąż w początkowym stadium.

Na rynku istnieją technologie wspierające pracowników bardzo wybiórczo, głównie w obszarze ścieżki zbiórki. Nikt wcześniej nie stworzył technologii opartej o sztuczną inteligencję, która byłaby w stanie optymalizować wszystkie procesy magazynowe, traktując problem całościowo. Zdecydowaliśmy się podjąć to wyzwanie – mówi Jerzy Danisz Kierownik Centrum Kompetencji WMS w firmie PSI Polska, opisując początki projektu.


Prace nad Warehouse Intelligence podzielono na pięć etapów. W pierwszym opracowano prototyp środowiska WI. W drugim inżynierowie PSI Polska rozpoczęli tworzenie symulacji, czyli stworzenie cyfrowego bliźniaka rzeczywistego magazynu.

Nasza idea polega na opracowaniu algorytmów sztucznej inteligencji, których zadaniem jest takie zarządzanie magazynem, aby osiągnąć optymalne wydajności poszczególnych procesów. Model ML (czyli algorytm machine learning/uczenia maszynowego) dostawał zadanie i miał znaleźć jak najlepsze rozwiązanie. Jeżeli udało mu się skutecznie zoptymalizować dany proces, wygrywał. Jeżeli nie, musiał próbować robić to dalej, aż do skutku. W ten sposób niejako metodą prób i błędów algorytm dochodzi to optymalnego rozwiązania, przy czym symulacja magazynu (cyfrowy bliźniak) pozwala na szybkie i praktycznie bezkosztowe przeanalizowanie setek tysięcy możliwych scenariuszy pracy magazynu – tłumaczy Jerzy Danisz.


Kolejne etapy pracy nad projektem to odpowiednio: trenowanie modeli ML, przygotowanie aplikacji, dzięki której użytkownik końcowy może przyjmować rekomendacje sugerowane przez sztuczną inteligencję oraz w końcu etap piąty zakłada pilotażowe uruchomienie całego systemu w magazynie LPP.

System optymalizuje picking

Pierwsze uzyskane wyniki są bardzo obiecujące. Okazało się, że wykorzystanie sztucznej inteligencji skróciło długość ścieżek kompletacyjnych w LPP aż o 30%. Jak to możliwe?

Podstawowym zadaniem wdrożonego algorytmu jest efektywne rozwiązywanie tzw. „problemu komiwojażera” (z angielskiego TSP). Polega on na wyznaczeniu najkrótszej trasy łączącej kilka punktów na mapie. W przypadku magazynu system musi wyznaczyć optymalną trasę przejścia dla kilkudziesięciu lokacji pickingowych. To, co na pierwszy rzut oka wydaje się proste, w rzeczywistości stanowi istotny problem dla matematyków od lat .– opowiada Jerzy Danisz z PSI Polska.


Pierwszy z modułów Warehouse Intelligence złamał utarte reguły i schematy, jakimi posługiwali się pickerzy na magazynie i miał rację. Podpowiedzi algorytmu przyniosły już wymierne oszczędności. Szacuje się, że ponad 1/3 kosztów logistyki magazynowej pochodzi z kompletacji zamówienia. Ten proces jest kosztowny szczególnie w przestrzeniach, gdzie występuje dużym wolumen zamówień, np. w e-commerce.

Elementy poszczególnych zamówień są pobierane z miejsc ich składowania, a następnie pakowane i przygotowywane do wysyłki. Koszty kompletacji i pakowania zależą bezpośrednio od SKU, czyli jednostek magazynowych, a w naszym przypadku są to znaczące liczby. Dlatego optymalizacja w tym obszarze ma dla nas ogromne znaczenie. Wpływa bezpośrednio na wydajność magazynową i sprawność obsługi zamówień naszych klientów – opisuje Sebastian Sołtys, dyrektor ds. logistyki z LPP.


NCBIR dostrzegł potencjał

Efekt wdrożenia w LPP to tylko część projektu Warehouse Intelligence. Jego celem jest opracowanie innowacyjnego środowiska kompleksowej analizy, planowania i optymalizacji procesów intralogistycznych, który bazować będzie na algorytmie sztucznej inteligencji. Oznacza to de facto możliwość optymalizacji wszystkich procesów magazynowych. Wykorzystanie mechanizmów uczenia maszynowego ze wzmocnieniem okazało się na tyle innowacyjnym podejściem, że na dofinansowanie projektu środki przyznało Narodowe Centrum Badań i Rozwoju. NCBIR. Firma PSI Polska dostała grant na badania i rozwój w wysokości niemal 3 mln złotych.

Obecnie realizowany jest czwarty etap projektu, którego celem jest intensywne uczenie algorytmów sztucznej inteligencji. W całym procesie jest on kluczowy. Nie ma tutaj drogi na skróty. Trenowanie algorytmu po to, by był on zdolny do działania w docelowej lokalizacji trwa około trzy miesiące. Biorąc pod uwagę, że system będzie obsługiwał przestrzeń, w której znajdują się miliony produktów i w której pracują setki pracowników, jeden kwartał na naukę to tempo ekspresowe.

Stworzenie algorytmu obsługującego tak złożony obiekt, jakim jest magazyn, to bardzo skomplikowany i złożony proces. Algorytmy uczenia ze wzmocnieniem bazują na interakcji z tzw. środowiskiem. W naszym przypadku środowiskiem jest magazyn, a konkretnie jego wierna cyfrowa kopia. Poprzez wielokrotne (idące często w setki tysięcy) powtarzanie różnych wariantów pracy magazynu na środowisku treningowym algorytm uczy się postępowania z konkretnymi sytuacjami (np. doborem sposobu kompletacji w zależności od struktury zleceń wydania). Następnie eksponując algorytm na dane z rzeczywistego magazynu, jest w stanie błyskawicznie zasugerować kierownikowi magazynu optymalne rozwiązanie. – wyjaśnia Jerzy Danisz.


Dostawca szacuje, że ostatni, piąty etap zakończy się na początku przyszłego roku.

PEAR podpowie opłacalność inwestycji

Opisywana technologia będzie integralną częścią systemu PSIwms, dostawca nie zamyka jednak do niej drzwi firmom zewnętrznym. Warehouse Intelligence będzie mógł być integrowany z dowolnymi systemem klasy WMS i z jego zalet będzie mogła korzystać dowolna firma handlowa i produkcyjna. Technologia będzie dostępna w dwóch wersjach: automatycznej (algorytmy sztucznej inteligencji – Warehouse Intelligence) i jako analizator ze wsparciem człowieka, określony mianem PEAR. Pod tym terminem kryje się analizator procesu logistycznego, który pozwala przeprowadzać symulacje i obserwować je na trójwymiarowym modelu wraz z jego aktualnymi wskaźnikami KPI. Z tego rozwiązania już w najbliższym czasie będzie mogło skorzystać LPP.

PEAR pozwala estymować opłacalność potencjalnych lub planowanych inwestycji i zmian. Użytkownik dostaje informacje, czy konkretna reorganizacja np. zakup nowego sortera będzie opłacalna i w jakim stopniu wpłynie na biznesowe operacje. W takiej sytuacji zdecydowanie łatwiej podjąć decyzję – tłumaczy Jerzy Danisz.


Eksperci z Accenture prognozują, że do 2035 sztuczna inteligencja zwiększy wydajność w logistyce o ponad 40%. Warto podkreślić, że firmy, które zaczną korzystać z AI w operacjach logistycznych AI w operacjach logistycznych wcześniej niż ich rynkowi konkurenci dostaną premię za pierwszeństwo.

Źródło: PSI Polska

Najnowsze wiadomości

Kwantowy przełom w cyberochronie - nadchodząca dekada przepisze zasady szyfrowania na nowo
Przez długi czas cyfrowe bezpieczeństwo opierało się na prostym założeniu: współczesne komputery potrzebowałyby ogromnych zasobów i wielu lat, aby złamać silne algorytmy szyfrowania. Rozwój technologii kwantowej zaczyna jednak tę regułę podważać, a eksperci przewidują, że w perspektywie 5–10 lat może nadejść „dzień zero”. Jest to moment, w którym zaawansowana maszyna kwantowa będzie w stanie przełamać większość aktualnie stosowanych zabezpieczeń kryptograficznych w czasie liczonym nie w latach, lecz w godzinach.
PSI prezentuje nową identyfikację wizualną
psilogoW ramach realizowanej strategii transformacji PSI Software SE zaprezentowała nową identyfikację wizualną. Odświeżony wizerunek w spójny sposób oddaje technologiczne zaawansowanie firmy, jej głęboką wiedzę branżową oraz silne ukierunkowanie na potrzeby klientów. Zmiany te wzmacniają pozycję PSI jako innowacyjnego lidera technologicznego w obszarze skalowalnych rozwiązań informatycznych opartych na sztucznej inteligencji i chmurze, rozwijanych z myślą o energetyce i przemyśle.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
F5 rozszerza portfolio bezpieczeństwa o narzędzia do ochrony systemów AI w środowiskach enterprise
F5 ogłosiło wprowadzenie dwóch nowych rozwiązań - F5 AI Guardrails oraz F5 AI Red Team - które mają odpowiedzieć na jedno z kluczowych wyzwań współczesnych organizacji: bezpieczne wdrażanie i eksploatację systemów sztucznej inteligencji na dużą skalę. Nowa oferta łączy ochronę działania modeli AI w czasie rzeczywistym z ofensy
Snowflake + OpenAI: AI bliżej biznesu
Snowflake przyspiesza wykorzystanie danych i sztucznej inteligencji w firmach, przenosząc AI z fazy eksperymentów do codziennych procesów biznesowych. Nowe rozwiązania w ramach AI Data Cloud integrują modele AI bezpośrednio z danymi, narzędziami deweloperskimi i warstwą semantyczną. Partnerstwo z OpenAI, agent Cortex Code, Semantic View Autopilot oraz rozwój Snowflake Postgres pokazują, jak budować skalowalne, bezpieczne i mierzalne wdrożenia AI w skali całej organizacji.



Najnowsze artykuły

Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
SENTEWspółczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Migracja z SAP ECC na S4 HANA: Ryzyka, korzyści i alternatywne rozwiązania
W ostatnich latach wiele firm, które korzystają z systemu SAP ECC (Enterprise Central Component), stoi przed decyzją o przejściu na nowszą wersję — SAP S4 HANA. W obliczu końca wsparcia dla ECC w 2030 roku, temat ten staje się coraz bardziej aktualny. Przemiany technologiczne oraz rosnące oczekiwania związane z integracją nowych funkcji, jak sztuczna inteligencja (AI), skłaniają do refleksji nad tym, czy warto podjąć tak dużą zmianę w architekturze systemu. Przyjrzyjmy się głównym powodom, dla których firmy rozważają migrację do S4 HANA, ale także argumentom,  które mogą przemawiać za pozostaniem przy dotychczasowym systemie ECC, przynajmniej na krótki okres.
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
BPSC FORTERROZysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Ponad połowa cyberataków zaczyna się od błędu człowieka
Ponad 2/3 firm w Polsce odnotowała w zeszłym roku co najmniej 1 incydent naruszenia bezpieczeństwa . Według danych Unit 42, zespołu analitycznego Palo Alto Networks, aż 60% ataków rozpoczyna się od działań wymierzonych w pracowników – najczęściej pod postacią phishingu i innych form inżynierii społecznej . To pokazuje, że w systemie ochrony organizacji pracownicy są kluczowym ogniwem – i że firmy muszą nie tylko edukować, ale też konsekwentnie egzekwować zasady cyberhigieny. Warto o tym pamiętać szczególnie teraz, w październiku, gdy obchodzimy Europejski Miesiąc Cyberbezpieczeństwa.
MES - holistyczne zarządzanie produkcją
Nowoczesna produkcja wymaga precyzji, szybkości i pełnej kontroli nad przebiegiem procesów. Rosnąca złożoność zleceń oraz presja kosztowa sprawiają, że ręczne raportowanie i intuicyjne zarządzanie coraz częściej okazują się niewystarczające. Firmy szukają rozwiązań, które umożliwiają im widzenie produkcji „na żywo”, a nie z opóźnieniem kilku godzin czy dni. W tym kontekście kluczową rolę odgrywają narzędzia, które porządkują informacje i pozwalają reagować natychmiast, zamiast po fakcie.

Przeczytaj Również

PSI automatyzuje logistykę Rossmanna: Wdrożenie WMS i MFC w Czechach

PSI Polska, dostawca systemów IT dla logistyki i przemysłu, realizuje wdrożenie systemu zarządzania… / Czytaj więcej

Jak wdrożyć WMS w magazynie i nie utknąć po drodze?

Skuteczne wdrożenie WMS zaczyna się nie od wyboru „najbogatszej” listy funkcji, tylko od audytu pro… / Czytaj więcej

Wdrożenie systemu WMS w dobrym stylu

Dobrze przeprowadzone wdrożenie WMS może podnieść wydajność logistyki bez zatrzymania sprzedaży — c… / Czytaj więcej

Qguar WMS i Qguar DS w Müller Świece: jak zintegrować produkcję, magazyn i rampę w jeden sterowalny proces

Müller Świece zintegrował produkcję, magazyn i rampę w jeden, sterowalny proces dzięki wdrożeniu Qg… / Czytaj więcej

Jak Infor ERP LN i automatyzacja magazynu SALMA wyniosły Etisoft na nowy poziom logistyki

Automatyzacja magazynu w Etisofcie pokazuje, że połączenie Infor ERP LN, systemu SALMA i robotów AM… / Czytaj więcej

Jak zwiększyć wydajność w magazynie? - Qguar WMS w firmie R5PL

Wdrożenie systemu Qguar WMS w centrum dystrybucyjnym R5PL pozwoliło potroić możliwości kompletacji… / Czytaj więcej