Sztuczna inteligencja w branży produkcyjnej – scenariusz science fiction, czy nieuchronna przyszłość?
Katgoria: IT SOLUTIONS / Utworzono: 04 październik 2018
Przyszłość i rozwój dziedziny naukowej, jaką jest Sztuczna Inteligencja pokazały, że jak każda inna dyscyplina naukowa powstała po to, aby służyć człowiekowi. Dziś nowoczesne algorytmy i programy uczące się towarzyszą nam nie tylko w życiu codziennym, ułatwiając zakupy czy podróżowanie, ale coraz częściej i śmielej sięga po nie przemysł upatrując w Sztucznej Inteligencji szans na przełomowe transformacje swoich procesów.
Wizję fabryk przyszłości urzeczywistniła niemiecka koncepcja Przemysłu 4.0 (ang. Industry 4.0), która w swych założeniach stawia śmiałą tezę, że informatyzacja i automatyzacja poszczególnych procesów produkcyjnych to dziś w dobie IV Rewolucji Przemysłowej zdecydowanie za mało. Tym samym inwestycje w typowe optymalizacje produkcji poprzez wdrażanie strategii Lean czy zastosowanie automatyki przemysłowej, systemów Operational Technology takich, jak: Internet Rzeczy, SCADA, MES, czy wprowadzając do zakładów roboty przemysłowe to zaledwie podstawa do budowy zintegrowanego pionowo i poziomo przedsiębiorstwa produkcyjnego, zwanego z j. ang. Connected Factory.
Koncepcja Przemysłu 4.0 stała się obecnie manifestem uprzemysłowionego świata. Warto przyjrzeć się bliżej jej założeniom, by lepiej zrozumieć, jak może wyglądać świat po przejściu tego technologicznego frontu.
Między światem fizycznym a cyfrowym
W zasadzie trudno jednoznacznie wskazać granicę pomiędzy trzecią, a czwartą rewolucją przemysłową. Zdecydowano się jednak postawić grubą kreskę pomiędzy klasyczną automatyzacją, robotyzacją i cyfryzacją procesów produkcyjnych, które stały się cechami charakteryzującymi trzeci przełom, a tym, co przyniosła nam koncepcja Przemysłu 4.0. Przenikanie się świata fizycznego ze światem cyfrowym – tak w jednym zdaniu można scharakteryzować czwartą rewolucję przemysłową. Wyraźna jeszcze dotąd granica pomiędzy tym co fizyczne, a tym co cyfrowe powoli zaczyna się rozmywać w implementacji kolejnych założeń transformacji cyfrowej przemysłu, produkcji i energetyki. Wysokorozwinięta technologia nie generuje dziś nowych, przełomowych wynalazków, ale znacznie zwiększa możliwości istniejących obiektów, zarówno urządzeń, pojazdów, jak i sieci, wdrażając tym samym w życie przełomowe idee.
Internet Rzeczy (ang. Internet of Things) jest niewątpliwie jedną z nich. Podstawą rozwiązań Sztucznej Inteligencji są dane, a tych w ilości umożliwiającej dalszą analitykę i optymalizację procesów dostarczą nie powolni w działaniu ludzie, ale same urządzenia i sensory. Dzięki komunikacji M2M (ang. machine to machine) urządzenia dotąd odseparowane od standardowych kanałów komunikacji będą w stanie wysyłać i odbierać informacje między sobą i tym samym uczestniczyć aktywnie w określonym procesie biznesowym.
W branży produkcyjnej Przemysłowy Internet Rzeczy jest obecnie elementem krytycznym w projektowaniu wysokowydajnych optymalizacji. Dane z pola produkcji stanowią podstawę dalszych działań i nie ma znaczenia, czy linia produkcyjna składa się z nowoczesnych urządzeń generujących strumienie danych procesowych, czy z maszyn pamiętających jeszcze V plan pięcioletni PRL. Dzięki firmom partnerskim wyspecjalizowanym w akwizycji danych przemysłowych, takich jak: Red NT, elmodis, czy DSR Solutions, platforma IoT firmy Microsoft stosowana jest zarówno w nowoczesnych fabrykach, jak i zakładach produkcyjnych ze stosunkowo wyeksploatowanym parkiem maszynowym. Dane, które generowane są przez urządzenia w gniazdach lub liniach produkcyjnych stanowią niezbędne źródło dla dalszej analityki i algorytmów uczących się.
Dane z wysokim ilorazem (sztucznej) inteligencji
Przetwarzanie dużych zbiorów danych (ang. Big Data) i zaawansowana analityka (ang. advanced analytics) to kolejne przełomowe koncepcje, które materializują się we wdrożeniach założeń Industry 4.0. Jeszcze do niedawna system raportowy kojarzył nam się przede wszystkim z plikiem Excel wypełnionym tabelami i wykresami. Taki scenariusz był możliwy do zastosowania, gdy mieliśmy do czynienia z danymi generowanymi przez człowieka, a więc o ograniczonej liczbie. W przypadku, kiedy źródłem danych jest urządzenie, a częstotliwość ich generowania jest mniejsza niż 1 sekunda, trudno analizę takiego zestawu informacji pozostawiać człowiekowi. Analizą dużych zbiorów danych zajmują się zaawansowane algorytmy komputerowe. Umożliwiają one precyzyjne wertowanie informacji w poszukiwaniu nieoczywistych korelacji wskazujących na potencjalne zależności pomiędzy pozornie niezwiązanymi ze sobą danymi. Z pojęciem przetwarzania Big Data wiąże się również termin uczenia maszynowego (ang. Machine learning). Jest to technika polegająca na implementacji modelu matematycznego, który następnie w warunkach laboratoryjnych jest uczony wzorcowymi zestawami danych. Dzięki temu taki program uruchomiony w środowisku produkcyjnym i zasilony danymi rzeczywistymi jest w stanie sygnalizować operatorowi odstępstwa od wyuczonego wzorca, a także uczyć się z czego te odstępstwa wynikają. W efekcie takiego ciągłego procesu otrzymujemy model, który jest w stanie nie tylko przewidywać pewne zjawiska i sytuacje – np. nadchodzącą usterkę jakiegoś elementu urządzenia, ale też właściwie na tę sytuację zareagować. Stąd już tylko krok do sztucznej inteligencji.
Sztuczna Inteligencja w branży produkcyjnej to dziś nie zbuntowane roboty, ale przede wszystkim usługi kognitywne (ang. cognitive services). Umożliwiają one zastosowanie mechanizmów rozpoznawania głosu, obrazów i dźwięków. Dzięki nim w nawet w istniejących już systemach informatycznych i urządzeniach możemy z łatwością zaimplementować np. autentykację poprzez odcisk palca, czy rozpoznanie twarzy użytkownika lub jego głosu. Ciekawym kierunkiem jest także diagnostyka wizyjna, w której algorytm rozpoznaje określone sytuacje na podstawia analizy obrazu.
Wspominałem, że Przemysł 4.0 to przenikanie się świata fizycznego ze światem cyfrowym. Trudno o bardziej trafny przykład na tę okoliczność niż wykorzystanie w przemyśle technologii rozszerzonej rzeczywistości (ang. augmented reality). Polega ona na tym, że na otaczający nas świat rzeczywisty nakładane są cyfrowe hologramy rozszerzające perspektywę obserwatora, lub dostarczające mu w ten sposób dodatkowych informacji. Dzięki aplikacjom i urządzeniom do rozszerzonej rzeczywistości, takich jak np. okulary Microsoft HoloLens, możliwa stała się implementacja takiego scenariusza, jak cyfrowy bliźniak (ang. digital twin). To nic innego jak cyfrowe odwzorowanie fizycznego urządzenia, linii produkcyjnej czy całej fabryki. Taka technika ułatwia prototypowanie, zmniejsza koszty testowania gotowego produktu, czy ułatwia jego projektowanie. Zastosowanie rozszerzonej rzeczywistości w przemyśle może mieć zatem zastosowanie w samym produkcie albo podnosić efektywność w całym łańcuchu wartości.
Technologia cyfrowa nigdy jeszcze nie była tak dostępna, jak obecnie, zarówno w ujęciu kosztowym, jak i łatwości jej użycia. Dzięki chmurze obliczeniowej (takiej, jak Microsoft AZURE) koszty inwestycyjne zostały zredukowane do minimum związanego z dostosowaniem obecnego ekosystemu IT i OT w przedsiębiorstwie. Aby jednak w pełni wykorzystać potencjał nowoczesnych technologii ICT należy mieć na uwadze kompleksową wizję transformacji cyfrowej. Jednorazowe wdrożenia nie przyniosą zakładanych wzrostów i mogą w efekcie rozczarować inwestora. Wspomniany model Connected Factory to koncepcja Fabryki Przyszłości, która może być zrealizowana przy wykorzystaniu obecnie dostępnych technologii. Polega na zintegrowaniu wszystkich poziomów przedsiębiorstwa produkcyjnego począwszy od parku maszynowego, poprzez poziomy sterowania i kontroli, aż po warstwy zarządzania procesami i przedsiębiorstwem. Taką integrację umożliwia platforma Microsoft AZURE dostarczając bezpiecznego i skalowalnego środowiska do wymiany, przechowywania i przetwarzania danych zarówno z OT, jak i z IT. Integracja pozioma natomiast, czyli połączenie tak zintegrowanych pionowo fabryk w jeden ekosystem daje z kolei efekty w skali globalnej dla całego koncernu.
Przykłady tak transformowanych przedsiębiorstw nie pochodzą już tylko z Europy Zachodniej (Volkswagen, Airbus, Rolls-Royce), czy z USA (Rockwell Automation), ale również z Polski (Seco Warwick, Tauron, JSW), a to dopiero początek projektów transformacyjnych w sektorze. Nie brakuje inspiracji do podejmowania kolejnych wyzwań technologicznych, które dziś jak żaden inny czynnik umożliwią biznesową ucieczkę od zmęczonego nadludzkim wysiłkiem produkcyjnego peletonu.
Autor: Jarosław Zych, Senior Business Development Manager, Microsoft
Źródło: www.microsoft.com
Wizję fabryk przyszłości urzeczywistniła niemiecka koncepcja Przemysłu 4.0 (ang. Industry 4.0), która w swych założeniach stawia śmiałą tezę, że informatyzacja i automatyzacja poszczególnych procesów produkcyjnych to dziś w dobie IV Rewolucji Przemysłowej zdecydowanie za mało. Tym samym inwestycje w typowe optymalizacje produkcji poprzez wdrażanie strategii Lean czy zastosowanie automatyki przemysłowej, systemów Operational Technology takich, jak: Internet Rzeczy, SCADA, MES, czy wprowadzając do zakładów roboty przemysłowe to zaledwie podstawa do budowy zintegrowanego pionowo i poziomo przedsiębiorstwa produkcyjnego, zwanego z j. ang. Connected Factory.
Koncepcja Przemysłu 4.0 stała się obecnie manifestem uprzemysłowionego świata. Warto przyjrzeć się bliżej jej założeniom, by lepiej zrozumieć, jak może wyglądać świat po przejściu tego technologicznego frontu.
Między światem fizycznym a cyfrowym
W zasadzie trudno jednoznacznie wskazać granicę pomiędzy trzecią, a czwartą rewolucją przemysłową. Zdecydowano się jednak postawić grubą kreskę pomiędzy klasyczną automatyzacją, robotyzacją i cyfryzacją procesów produkcyjnych, które stały się cechami charakteryzującymi trzeci przełom, a tym, co przyniosła nam koncepcja Przemysłu 4.0. Przenikanie się świata fizycznego ze światem cyfrowym – tak w jednym zdaniu można scharakteryzować czwartą rewolucję przemysłową. Wyraźna jeszcze dotąd granica pomiędzy tym co fizyczne, a tym co cyfrowe powoli zaczyna się rozmywać w implementacji kolejnych założeń transformacji cyfrowej przemysłu, produkcji i energetyki. Wysokorozwinięta technologia nie generuje dziś nowych, przełomowych wynalazków, ale znacznie zwiększa możliwości istniejących obiektów, zarówno urządzeń, pojazdów, jak i sieci, wdrażając tym samym w życie przełomowe idee.
Internet Rzeczy (ang. Internet of Things) jest niewątpliwie jedną z nich. Podstawą rozwiązań Sztucznej Inteligencji są dane, a tych w ilości umożliwiającej dalszą analitykę i optymalizację procesów dostarczą nie powolni w działaniu ludzie, ale same urządzenia i sensory. Dzięki komunikacji M2M (ang. machine to machine) urządzenia dotąd odseparowane od standardowych kanałów komunikacji będą w stanie wysyłać i odbierać informacje między sobą i tym samym uczestniczyć aktywnie w określonym procesie biznesowym.
W branży produkcyjnej Przemysłowy Internet Rzeczy jest obecnie elementem krytycznym w projektowaniu wysokowydajnych optymalizacji. Dane z pola produkcji stanowią podstawę dalszych działań i nie ma znaczenia, czy linia produkcyjna składa się z nowoczesnych urządzeń generujących strumienie danych procesowych, czy z maszyn pamiętających jeszcze V plan pięcioletni PRL. Dzięki firmom partnerskim wyspecjalizowanym w akwizycji danych przemysłowych, takich jak: Red NT, elmodis, czy DSR Solutions, platforma IoT firmy Microsoft stosowana jest zarówno w nowoczesnych fabrykach, jak i zakładach produkcyjnych ze stosunkowo wyeksploatowanym parkiem maszynowym. Dane, które generowane są przez urządzenia w gniazdach lub liniach produkcyjnych stanowią niezbędne źródło dla dalszej analityki i algorytmów uczących się.
Dane z wysokim ilorazem (sztucznej) inteligencji
Przetwarzanie dużych zbiorów danych (ang. Big Data) i zaawansowana analityka (ang. advanced analytics) to kolejne przełomowe koncepcje, które materializują się we wdrożeniach założeń Industry 4.0. Jeszcze do niedawna system raportowy kojarzył nam się przede wszystkim z plikiem Excel wypełnionym tabelami i wykresami. Taki scenariusz był możliwy do zastosowania, gdy mieliśmy do czynienia z danymi generowanymi przez człowieka, a więc o ograniczonej liczbie. W przypadku, kiedy źródłem danych jest urządzenie, a częstotliwość ich generowania jest mniejsza niż 1 sekunda, trudno analizę takiego zestawu informacji pozostawiać człowiekowi. Analizą dużych zbiorów danych zajmują się zaawansowane algorytmy komputerowe. Umożliwiają one precyzyjne wertowanie informacji w poszukiwaniu nieoczywistych korelacji wskazujących na potencjalne zależności pomiędzy pozornie niezwiązanymi ze sobą danymi. Z pojęciem przetwarzania Big Data wiąże się również termin uczenia maszynowego (ang. Machine learning). Jest to technika polegająca na implementacji modelu matematycznego, który następnie w warunkach laboratoryjnych jest uczony wzorcowymi zestawami danych. Dzięki temu taki program uruchomiony w środowisku produkcyjnym i zasilony danymi rzeczywistymi jest w stanie sygnalizować operatorowi odstępstwa od wyuczonego wzorca, a także uczyć się z czego te odstępstwa wynikają. W efekcie takiego ciągłego procesu otrzymujemy model, który jest w stanie nie tylko przewidywać pewne zjawiska i sytuacje – np. nadchodzącą usterkę jakiegoś elementu urządzenia, ale też właściwie na tę sytuację zareagować. Stąd już tylko krok do sztucznej inteligencji.
Sztuczna Inteligencja w branży produkcyjnej to dziś nie zbuntowane roboty, ale przede wszystkim usługi kognitywne (ang. cognitive services). Umożliwiają one zastosowanie mechanizmów rozpoznawania głosu, obrazów i dźwięków. Dzięki nim w nawet w istniejących już systemach informatycznych i urządzeniach możemy z łatwością zaimplementować np. autentykację poprzez odcisk palca, czy rozpoznanie twarzy użytkownika lub jego głosu. Ciekawym kierunkiem jest także diagnostyka wizyjna, w której algorytm rozpoznaje określone sytuacje na podstawia analizy obrazu.
Wspominałem, że Przemysł 4.0 to przenikanie się świata fizycznego ze światem cyfrowym. Trudno o bardziej trafny przykład na tę okoliczność niż wykorzystanie w przemyśle technologii rozszerzonej rzeczywistości (ang. augmented reality). Polega ona na tym, że na otaczający nas świat rzeczywisty nakładane są cyfrowe hologramy rozszerzające perspektywę obserwatora, lub dostarczające mu w ten sposób dodatkowych informacji. Dzięki aplikacjom i urządzeniom do rozszerzonej rzeczywistości, takich jak np. okulary Microsoft HoloLens, możliwa stała się implementacja takiego scenariusza, jak cyfrowy bliźniak (ang. digital twin). To nic innego jak cyfrowe odwzorowanie fizycznego urządzenia, linii produkcyjnej czy całej fabryki. Taka technika ułatwia prototypowanie, zmniejsza koszty testowania gotowego produktu, czy ułatwia jego projektowanie. Zastosowanie rozszerzonej rzeczywistości w przemyśle może mieć zatem zastosowanie w samym produkcie albo podnosić efektywność w całym łańcuchu wartości.
Technologia cyfrowa nigdy jeszcze nie była tak dostępna, jak obecnie, zarówno w ujęciu kosztowym, jak i łatwości jej użycia. Dzięki chmurze obliczeniowej (takiej, jak Microsoft AZURE) koszty inwestycyjne zostały zredukowane do minimum związanego z dostosowaniem obecnego ekosystemu IT i OT w przedsiębiorstwie. Aby jednak w pełni wykorzystać potencjał nowoczesnych technologii ICT należy mieć na uwadze kompleksową wizję transformacji cyfrowej. Jednorazowe wdrożenia nie przyniosą zakładanych wzrostów i mogą w efekcie rozczarować inwestora. Wspomniany model Connected Factory to koncepcja Fabryki Przyszłości, która może być zrealizowana przy wykorzystaniu obecnie dostępnych technologii. Polega na zintegrowaniu wszystkich poziomów przedsiębiorstwa produkcyjnego począwszy od parku maszynowego, poprzez poziomy sterowania i kontroli, aż po warstwy zarządzania procesami i przedsiębiorstwem. Taką integrację umożliwia platforma Microsoft AZURE dostarczając bezpiecznego i skalowalnego środowiska do wymiany, przechowywania i przetwarzania danych zarówno z OT, jak i z IT. Integracja pozioma natomiast, czyli połączenie tak zintegrowanych pionowo fabryk w jeden ekosystem daje z kolei efekty w skali globalnej dla całego koncernu.
Przykłady tak transformowanych przedsiębiorstw nie pochodzą już tylko z Europy Zachodniej (Volkswagen, Airbus, Rolls-Royce), czy z USA (Rockwell Automation), ale również z Polski (Seco Warwick, Tauron, JSW), a to dopiero początek projektów transformacyjnych w sektorze. Nie brakuje inspiracji do podejmowania kolejnych wyzwań technologicznych, które dziś jak żaden inny czynnik umożliwią biznesową ucieczkę od zmęczonego nadludzkim wysiłkiem produkcyjnego peletonu.
Autor: Jarosław Zych, Senior Business Development Manager, Microsoft
Źródło: www.microsoft.com
Najnowsze wiadomości
Kwantowy przełom w cyberochronie - nadchodząca dekada przepisze zasady szyfrowania na nowo
Przez długi czas cyfrowe bezpieczeństwo opierało się na prostym założeniu: współczesne komputery potrzebowałyby ogromnych zasobów i wielu lat, aby złamać silne algorytmy szyfrowania. Rozwój technologii kwantowej zaczyna jednak tę regułę podważać, a eksperci przewidują, że w perspektywie 5–10 lat może nadejść „dzień zero”. Jest to moment, w którym zaawansowana maszyna kwantowa będzie w stanie przełamać większość aktualnie stosowanych zabezpieczeń kryptograficznych w czasie liczonym nie w latach, lecz w godzinach.
PSI prezentuje nową identyfikację wizualną
W ramach realizowanej strategii transformacji PSI Software SE zaprezentowała nową identyfikację wizualną. Odświeżony wizerunek w spójny sposób oddaje technologiczne zaawansowanie firmy, jej głęboką wiedzę branżową oraz silne ukierunkowanie na potrzeby klientów. Zmiany te wzmacniają pozycję PSI jako innowacyjnego lidera technologicznego w obszarze skalowalnych rozwiązań informatycznych opartych na sztucznej inteligencji i chmurze, rozwijanych z myślą o energetyce i przemyśle.
W ramach realizowanej strategii transformacji PSI Software SE zaprezentowała nową identyfikację wizualną. Odświeżony wizerunek w spójny sposób oddaje technologiczne zaawansowanie firmy, jej głęboką wiedzę branżową oraz silne ukierunkowanie na potrzeby klientów. Zmiany te wzmacniają pozycję PSI jako innowacyjnego lidera technologicznego w obszarze skalowalnych rozwiązań informatycznych opartych na sztucznej inteligencji i chmurze, rozwijanych z myślą o energetyce i przemyśle.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
F5 rozszerza portfolio bezpieczeństwa o narzędzia do ochrony systemów AI w środowiskach enterprise
F5 ogłosiło wprowadzenie dwóch nowych rozwiązań - F5 AI Guardrails oraz F5 AI Red Team - które mają odpowiedzieć na jedno z kluczowych wyzwań współczesnych organizacji: bezpieczne wdrażanie i eksploatację systemów sztucznej inteligencji na dużą skalę. Nowa oferta łączy ochronę działania modeli AI w czasie rzeczywistym z ofensy
Snowflake + OpenAI: AI bliżej biznesu
Snowflake przyspiesza wykorzystanie danych i sztucznej inteligencji w firmach, przenosząc AI z fazy eksperymentów do codziennych procesów biznesowych. Nowe rozwiązania w ramach AI Data Cloud integrują modele AI bezpośrednio z danymi, narzędziami deweloperskimi i warstwą semantyczną. Partnerstwo z OpenAI, agent Cortex Code, Semantic View Autopilot oraz rozwój Snowflake Postgres pokazują, jak budować skalowalne, bezpieczne i mierzalne wdrożenia AI w skali całej organizacji.
Najnowsze artykuły
Magazyn bez błędów? Sprawdź, jak system WMS zmienia codzienność logistyki
Współczesna logistyka wymaga nie tylko szybkości działania, lecz także maksymalnej precyzji – to właśnie te czynniki coraz częściej decydują o przewadze konkurencyjnej firm. Nawet drobne pomyłki w ewidencji stanów magazynowych, błędy przy przyjmowaniu dostaw czy nieprawidłowe rozmieszczenie towarów, mogą skutkować poważnymi stratami finansowymi i opóźnieniami w realizacji zamówień. W jaki sposób nowoczesne rozwiązania do zarządzania pomagają unikać takich sytuacji? Czym właściwie różni się tradycyjny system magazynowy od zaawansowanych rozwiązań klasy WMS (ang. Warehouse Management System)? I w jaki sposób inteligentne zarządzanie procesami magazynowymi realnie usprawnia codzienną pracę setek firm?
Migracja z SAP ECC na S4 HANA: Ryzyka, korzyści i alternatywne rozwiązania
W ostatnich latach wiele firm, które korzystają z systemu SAP ECC (Enterprise Central Component), stoi przed decyzją o przejściu na nowszą wersję — SAP S4 HANA. W obliczu końca wsparcia dla ECC w 2030 roku, temat ten staje się coraz bardziej aktualny. Przemiany technologiczne oraz rosnące oczekiwania związane z integracją nowych funkcji, jak sztuczna inteligencja (AI), skłaniają do refleksji nad tym, czy warto podjąć tak dużą zmianę w architekturze systemu. Przyjrzyjmy się głównym powodom, dla których firmy rozważają migrację do S4 HANA, ale także argumentom, które mogą przemawiać za pozostaniem przy dotychczasowym systemie ECC, przynajmniej na krótki okres.
Jak maksymalizować zyski z MTO i MTS dzięki BPSC ERP?
Zysk przedsiębiorstwa produkcyjnego zależy nie tylko od wydajności maszyn, ale przede wszystkim od precyzyjnego planowania, realnych danych i umiejętnego zarządzania procesami. Dlatego firmy, które chcą skutecznie działać zarówno w modelu Make to Stock (MTS), jak i Make to Order (MTO), coraz częściej sięgają po rozwiązania klasy ERP, takie jak BPSC ERP.
Ponad połowa cyberataków zaczyna się od błędu człowieka
Ponad 2/3 firm w Polsce odnotowała w zeszłym roku co najmniej 1 incydent naruszenia bezpieczeństwa . Według danych Unit 42, zespołu analitycznego Palo Alto Networks, aż 60% ataków rozpoczyna się od działań wymierzonych w pracowników – najczęściej pod postacią phishingu i innych form inżynierii społecznej . To pokazuje, że w systemie ochrony organizacji pracownicy są kluczowym ogniwem – i że firmy muszą nie tylko edukować, ale też konsekwentnie egzekwować zasady cyberhigieny. Warto o tym pamiętać szczególnie teraz, w październiku, gdy obchodzimy Europejski Miesiąc Cyberbezpieczeństwa.
MES - holistyczne zarządzanie produkcją
Nowoczesna produkcja wymaga precyzji, szybkości i pełnej kontroli nad przebiegiem procesów. Rosnąca złożoność zleceń oraz presja kosztowa sprawiają, że ręczne raportowanie i intuicyjne zarządzanie coraz częściej okazują się niewystarczające. Firmy szukają rozwiązań, które umożliwiają im widzenie produkcji „na żywo”, a nie z opóźnieniem kilku godzin czy dni. W tym kontekście kluczową rolę odgrywają narzędzia, które porządkują informacje i pozwalają reagować natychmiast, zamiast po fakcie.
Przeczytaj Również
Technologie na żądanie zyskują na popularności, ale za jaką cenę?
W erze dynamicznej transformacji cyfrowej organizacje coraz chętniej sięgają po technologie dostępn… / Czytaj więcej
Jaki serwer dla ERP, CRM czy BI? VPS, dedykowany, chmura a może on-premise?
Wybór właściwej infrastruktury serwerowej dla systemów ERP, CRM czy Business Intelligence to jedna… / Czytaj więcej
Strategiczna przewaga czy kosztowny mit? Kto wygrywa dzięki chmurze?
Chmura miała być odpowiedzią na wyzwania sektora finansowego: przestarzałą infrastrukturę, rozprosz… / Czytaj więcej
Nowe narzędzie, nowe możliwości – Adrian Guzy z CTDI o innowacyjności, kulturze pracy z danymi i analityce w Microsoft Fabric
W nowej siedzibie CTDI w Sękocinie Starym pod Warszawą tafle szkła odbijają poranne słońce, a wnętr… / Czytaj więcej
Hiperautomatyzacja: kolejny etap rewolucji czy buzzword?
Automatyzacja to już nie tylko boty i proste skrypty – kolejnym krokiem jest hiperautomatyzacja, kt… / Czytaj więcej
Jak agenci AI zrewolucjonizują przemysł, zwiększą produktywność i obniżą koszty
Obecnie każda firma chce być firmą AI, ale według McKinsey tylko 1% przedsiębiorstw uważa, że osiąg… / Czytaj więcej

